YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings

    Source: Journal of Tribology:;2022:;volume( 144 ):;issue: 009::page 91801-1
    Author:
    Bättig, Philipp K.
    ,
    Wagner, Patrick H.
    ,
    Schiffmann, Jürg A.
    DOI: 10.1115/1.4053978
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the results of a theoretical and experimental investigation of the potential of enhanced groove geometries to increase the bearing clearance of a Herringbone Grooved Journal Bearing (HGJB) supported rotor. The theoretical study investigates various groove geometries of different complexities and their effect on the stability threshold of a particular rotor geometry. The theoretical results obtained from a rigid-body rotordynamic model suggest an increase of more than 300% in instability onset speed when enhanced groove geometries are used compared to a classical, helically grooved rotor featuring the same radial bearing clearance. As part of the experimental investigation, one rotor shaft with classical grooves, representing the baseline rotor, and four rotors of identical diameter and clearance, but featuring enhanced grooves of varying degrees of complexity, were manufactured and experimentally tested. Good agreement between the experimentally determined speed of instability onset and the prediction was found for the investigated enhanced groove patterns. Experimental results of the classical rotor suggest the onset of instability to occur at a rotational speed of 56 krpm, whereas a speed of 180 krpm was achieved when enhanced groove geometries were applied to the rotor, which agrees very well with the theoretically predicted results and confirms the potential of enhanced groove geometries to stabilize HGJBs. Furthermore, the rotor featuring only a varying groove angle along the rotor axis was found to perform similarly to fully enhanced grooves of varying groove width, depth, and angle, hence representing a good trade-off between performance increase and design cost.
    • Download: (1.233Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284360
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorBättig, Philipp K.
    contributor authorWagner, Patrick H.
    contributor authorSchiffmann, Jürg A.
    date accessioned2022-05-08T08:48:04Z
    date available2022-05-08T08:48:04Z
    date copyright3/18/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4787
    identifier othertrib_144_9_091801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284360
    description abstractThis paper presents the results of a theoretical and experimental investigation of the potential of enhanced groove geometries to increase the bearing clearance of a Herringbone Grooved Journal Bearing (HGJB) supported rotor. The theoretical study investigates various groove geometries of different complexities and their effect on the stability threshold of a particular rotor geometry. The theoretical results obtained from a rigid-body rotordynamic model suggest an increase of more than 300% in instability onset speed when enhanced groove geometries are used compared to a classical, helically grooved rotor featuring the same radial bearing clearance. As part of the experimental investigation, one rotor shaft with classical grooves, representing the baseline rotor, and four rotors of identical diameter and clearance, but featuring enhanced grooves of varying degrees of complexity, were manufactured and experimentally tested. Good agreement between the experimentally determined speed of instability onset and the prediction was found for the investigated enhanced groove patterns. Experimental results of the classical rotor suggest the onset of instability to occur at a rotational speed of 56 krpm, whereas a speed of 180 krpm was achieved when enhanced groove geometries were applied to the rotor, which agrees very well with the theoretically predicted results and confirms the potential of enhanced groove geometries to stabilize HGJBs. Furthermore, the rotor featuring only a varying groove angle along the rotor axis was found to perform similarly to fully enhanced grooves of varying groove width, depth, and angle, hence representing a good trade-off between performance increase and design cost.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Tribology
    identifier doi10.1115/1.4053978
    journal fristpage91801-1
    journal lastpage91801-12
    page12
    treeJournal of Tribology:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian