Show simple item record

contributor authorBättig, Philipp K.
contributor authorWagner, Patrick H.
contributor authorSchiffmann, Jürg A.
date accessioned2022-05-08T08:48:04Z
date available2022-05-08T08:48:04Z
date copyright3/18/2022 12:00:00 AM
date issued2022
identifier issn0742-4787
identifier othertrib_144_9_091801.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284360
description abstractThis paper presents the results of a theoretical and experimental investigation of the potential of enhanced groove geometries to increase the bearing clearance of a Herringbone Grooved Journal Bearing (HGJB) supported rotor. The theoretical study investigates various groove geometries of different complexities and their effect on the stability threshold of a particular rotor geometry. The theoretical results obtained from a rigid-body rotordynamic model suggest an increase of more than 300% in instability onset speed when enhanced groove geometries are used compared to a classical, helically grooved rotor featuring the same radial bearing clearance. As part of the experimental investigation, one rotor shaft with classical grooves, representing the baseline rotor, and four rotors of identical diameter and clearance, but featuring enhanced grooves of varying degrees of complexity, were manufactured and experimentally tested. Good agreement between the experimentally determined speed of instability onset and the prediction was found for the investigated enhanced groove patterns. Experimental results of the classical rotor suggest the onset of instability to occur at a rotational speed of 56 krpm, whereas a speed of 180 krpm was achieved when enhanced groove geometries were applied to the rotor, which agrees very well with the theoretically predicted results and confirms the potential of enhanced groove geometries to stabilize HGJBs. Furthermore, the rotor featuring only a varying groove angle along the rotor axis was found to perform similarly to fully enhanced grooves of varying groove width, depth, and angle, hence representing a good trade-off between performance increase and design cost.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings
typeJournal Paper
journal volume144
journal issue9
journal titleJournal of Tribology
identifier doi10.1115/1.4053978
journal fristpage91801-1
journal lastpage91801-12
page12
treeJournal of Tribology:;2022:;volume( 144 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record