YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall

    Source: Journal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003::page 31001-1
    Author:
    Zhou, Jiri
    ,
    Yu, Tao
    ,
    Lei, Bo
    DOI: 10.1115/1.4053775
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The heating system combining solar air collector with hollow ventilated interior wall (SAC-HVIW) can effectively extend the heating time. However, due to the large wall-window ratio of buildings on Tibetan Plateau, the strong solar radiation irradiating on the interior wall may influence the thermal performance of HVIW. In this paper, an experimental room is constructed to study the influence of external solar heat gain on the thermal performance of HVIW. Steady-state measurements are carried out by considering different ventilation rates, supply air temperatures and heat gains. Results show that the external heat gain has almost no effect on U-value, but it increases the heating capacity by increasing the logarithmic mean temperature difference (LMTD). For all cases, the heating capacity of HVIW is related to LMTD and supply air velocity, and U-value mainly increases with supply air velocity. Heat transfer of the interior surface of HVIW is dominated by forced convection which increases linearly with supply air velocity. The radiant heat transfer coefficient of the exterior surface of HVIW is not affected by the external heat gain with the mean value of 5.65 W/(m2 · K), while the convective heat transfer coefficient increases logarithmically with the external heat gain. The proportion of radiant heat transfer decreases as a power function with the increase of the exterior surface temperature. Measurements in this paper are used to evaluate the influence of external heat gain on the heating performance of HVIW, which is beneficial to the design of HVIW.
    • Download: (1.054Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284247
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorZhou, Jiri
    contributor authorYu, Tao
    contributor authorLei, Bo
    date accessioned2022-05-08T08:42:50Z
    date available2022-05-08T08:42:50Z
    date copyright3/2/2022 12:00:00 AM
    date issued2022
    identifier issn0199-6231
    identifier othersol_144_3_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284247
    description abstractThe heating system combining solar air collector with hollow ventilated interior wall (SAC-HVIW) can effectively extend the heating time. However, due to the large wall-window ratio of buildings on Tibetan Plateau, the strong solar radiation irradiating on the interior wall may influence the thermal performance of HVIW. In this paper, an experimental room is constructed to study the influence of external solar heat gain on the thermal performance of HVIW. Steady-state measurements are carried out by considering different ventilation rates, supply air temperatures and heat gains. Results show that the external heat gain has almost no effect on U-value, but it increases the heating capacity by increasing the logarithmic mean temperature difference (LMTD). For all cases, the heating capacity of HVIW is related to LMTD and supply air velocity, and U-value mainly increases with supply air velocity. Heat transfer of the interior surface of HVIW is dominated by forced convection which increases linearly with supply air velocity. The radiant heat transfer coefficient of the exterior surface of HVIW is not affected by the external heat gain with the mean value of 5.65 W/(m2 · K), while the convective heat transfer coefficient increases logarithmically with the external heat gain. The proportion of radiant heat transfer decreases as a power function with the increase of the exterior surface temperature. Measurements in this paper are used to evaluate the influence of external heat gain on the heating performance of HVIW, which is beneficial to the design of HVIW.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4053775
    journal fristpage31001-1
    journal lastpage31001-11
    page11
    treeJournal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian