YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Improved Thermochemical Energy Storage Material Using Nanocellulose to Stabilize Calcium Chloride Salt

    Source: Journal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003::page 30905-1
    Author:
    Gladen, Adam C.
    ,
    Bajwa, Dilpreet
    DOI: 10.1115/1.4053904
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: One promising thermochemical reaction for energy storage is the hydration of hygroscopic salts. However, pure salts have poor cycle stability. The present work investigates a new composite material by impregnating a framework of crystalline nanocellulose (CNC) with calcium chloride (CaCl2). A key aspect of this material is the potential for a nanoscale, stabilizing framework provided by the CNC. Various weight ratios of CNC:CaCl2 were synthesized. The attachment of the salt to the CNC was determined by TEM and FTIR analyses. The weight loss and enthalpy of dehydration were measured after hydration at prescribed relative humidity and a fixed hydration time. The stability was determined by conducting multiple cycles. The results show that CNC can be successfully impregnated with salt. The nanocellulose binds to submicron salt particles and provides a stabilizing, nanoscale architecture. The composite material shows improved energy storage characteristics and stability. For the given hydration conditions, the CNC improves the hydration rates and allows more water to be absorbed within the hydration timeframe. This improved reaction rate can improve the enthalpy of dehydration for the fixed hydration time. Insufficient CNC (i.e., 1:10) allowed the salt particles to more easily deliquesce. With sufficient CNC framework, the CNC–salt material demonstrated improved stability by retaining structural integrity and specific enthalpy over the course of multiple cycles while pure CaCl2 deliquesced.
    • Download: (946.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Improved Thermochemical Energy Storage Material Using Nanocellulose to Stabilize Calcium Chloride Salt

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284245
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorGladen, Adam C.
    contributor authorBajwa, Dilpreet
    date accessioned2022-05-08T08:42:44Z
    date available2022-05-08T08:42:44Z
    date copyright3/7/2022 12:00:00 AM
    date issued2022
    identifier issn0199-6231
    identifier othersol_144_3_030905.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284245
    description abstractOne promising thermochemical reaction for energy storage is the hydration of hygroscopic salts. However, pure salts have poor cycle stability. The present work investigates a new composite material by impregnating a framework of crystalline nanocellulose (CNC) with calcium chloride (CaCl2). A key aspect of this material is the potential for a nanoscale, stabilizing framework provided by the CNC. Various weight ratios of CNC:CaCl2 were synthesized. The attachment of the salt to the CNC was determined by TEM and FTIR analyses. The weight loss and enthalpy of dehydration were measured after hydration at prescribed relative humidity and a fixed hydration time. The stability was determined by conducting multiple cycles. The results show that CNC can be successfully impregnated with salt. The nanocellulose binds to submicron salt particles and provides a stabilizing, nanoscale architecture. The composite material shows improved energy storage characteristics and stability. For the given hydration conditions, the CNC improves the hydration rates and allows more water to be absorbed within the hydration timeframe. This improved reaction rate can improve the enthalpy of dehydration for the fixed hydration time. Insufficient CNC (i.e., 1:10) allowed the salt particles to more easily deliquesce. With sufficient CNC framework, the CNC–salt material demonstrated improved stability by retaining structural integrity and specific enthalpy over the course of multiple cycles while pure CaCl2 deliquesced.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Improved Thermochemical Energy Storage Material Using Nanocellulose to Stabilize Calcium Chloride Salt
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4053904
    journal fristpage30905-1
    journal lastpage30905-8
    page8
    treeJournal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian