YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Non-Uniform Porous Structures and Cycling Control for Optimized Fixed-Bed Solar Thermochemical Water Splitting

    Source: Journal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003::page 30904-1
    Author:
    Dai, Xiaoyu
    ,
    Haussener, Sophia
    DOI: 10.1115/1.4052960
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solar thermochemical redox cycles provide a sustainable pathway for solar fuel processing. If done in porous (ceria) structures, they can profit from faster reaction rates owed to the enhanced heat and mass transport characteristics. However, the exact porous structure and operating conditions significantly affect the performance. We present a transient volume-averaged fixed-bed model of a thermochemical redox reactor utilizing macroporous ceria. We studied the porosity-dependent (ɛ = 0.4–0.9) and operating condition-dependent (solar concentration ratio, ratio of oxygen partial pressure to total pressure, and gas flowrate) performance of the fixed-bed ceria redox cycle. Structures with large porosity (ɛ = 0.9) showed better performance than low-porosity structures, owning to the enhanced heat absorption and resulting higher temperatures. We show that the cycle duration requires optimization according to the porosity of the structure. Two hours of operation for a structure with ɛ = 0.75 resulted in the largest hydrogen production (115.78mLgceria−1) if the single cycle duration was 240 s (i.e., 30 cycles in 2 h), while nearly five times less was produced for a 15 times longer single cycle duration (i.e., two cycles in 2 h). We subsequently introduced porous structures with different types of non-uniform porosity distributions. For an average porosity of ɛ = 0.75, the most favorable non-uniform porosity media exhibited higher porosity at the boundaries and a denser core. The fuel production of the best non-uniform porous structure was six times larger compared to a uniform porous structure. Adjusting on top of this the cycling conditions, a 14.6 times production gain was achieved. This work suggests that under non-isothermal operation condition for macroporous ceria redox fixed-bed cycling, non-uniform porous structure with higher porosity boundaries and a dense core benefit fuel production and porosity-dependent cycle duration modulation can be used to increase performance.
    • Download: (1.398Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Non-Uniform Porous Structures and Cycling Control for Optimized Fixed-Bed Solar Thermochemical Water Splitting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284244
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorDai, Xiaoyu
    contributor authorHaussener, Sophia
    date accessioned2022-05-08T08:42:40Z
    date available2022-05-08T08:42:40Z
    date copyright2/11/2022 12:00:00 AM
    date issued2022
    identifier issn0199-6231
    identifier othersol_144_3_030904.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284244
    description abstractSolar thermochemical redox cycles provide a sustainable pathway for solar fuel processing. If done in porous (ceria) structures, they can profit from faster reaction rates owed to the enhanced heat and mass transport characteristics. However, the exact porous structure and operating conditions significantly affect the performance. We present a transient volume-averaged fixed-bed model of a thermochemical redox reactor utilizing macroporous ceria. We studied the porosity-dependent (ɛ = 0.4–0.9) and operating condition-dependent (solar concentration ratio, ratio of oxygen partial pressure to total pressure, and gas flowrate) performance of the fixed-bed ceria redox cycle. Structures with large porosity (ɛ = 0.9) showed better performance than low-porosity structures, owning to the enhanced heat absorption and resulting higher temperatures. We show that the cycle duration requires optimization according to the porosity of the structure. Two hours of operation for a structure with ɛ = 0.75 resulted in the largest hydrogen production (115.78mLgceria−1) if the single cycle duration was 240 s (i.e., 30 cycles in 2 h), while nearly five times less was produced for a 15 times longer single cycle duration (i.e., two cycles in 2 h). We subsequently introduced porous structures with different types of non-uniform porosity distributions. For an average porosity of ɛ = 0.75, the most favorable non-uniform porosity media exhibited higher porosity at the boundaries and a denser core. The fuel production of the best non-uniform porous structure was six times larger compared to a uniform porous structure. Adjusting on top of this the cycling conditions, a 14.6 times production gain was achieved. This work suggests that under non-isothermal operation condition for macroporous ceria redox fixed-bed cycling, non-uniform porous structure with higher porosity boundaries and a dense core benefit fuel production and porosity-dependent cycle duration modulation can be used to increase performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNon-Uniform Porous Structures and Cycling Control for Optimized Fixed-Bed Solar Thermochemical Water Splitting
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4052960
    journal fristpage30904-1
    journal lastpage30904-13
    page13
    treeJournal of Solar Energy Engineering:;2022:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian