YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrothermal Performance of In-Tunnel Ground Freezing Subjected to Drilling Inaccuracy and Seepage Flow

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001::page 04021071
    Author:
    Pei-Tao Li
    ,
    Dian-Qing Li
    ,
    Xiao-Song Tang
    ,
    Yong Liu
    DOI: 10.1061/AJRUA6.0001195
    Publisher: ASCE
    Abstract: In the last few decades, artificial ground freezing (AGF) has been used as a temporary soil stabilization and waterproofing technique in geotechnical engineering, especially in tunneling construction. In construction, drilling inaccuracy of freeze pipes occurs, slowing the formation of a connected frozen wall and in turn undermining the process of AGF. This study used a hydrothermal coupling finite-element model to investigate the heat transfer and formation of a frozen wall during the progress of AGF. The simulation results indicate that the drilling inaccuracy causes temperature fluctuation at the temperature monitoring point and prolongs the formation time of the frozen wall. The maximum drilling inaccuracy allowed in practice is recommended to be 0.2 m based on the model (established using the shield tunneling of Nanjing Subway Line 10). The low-temperature zone develops unevenly and finally forms a complete frozen wall with an elliptical ring in the presence of the seepage flow. Thus, the location of the temperature monitoring points needs to be reconsidered, rather than being distributed evenly around the perimeter of the tunnel in practical engineering, and more monitoring points should be placed to monitor the formation of the frozen wall.
    • Download: (1.846Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrothermal Performance of In-Tunnel Ground Freezing Subjected to Drilling Inaccuracy and Seepage Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282714
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorPei-Tao Li
    contributor authorDian-Qing Li
    contributor authorXiao-Song Tang
    contributor authorYong Liu
    date accessioned2022-05-07T20:39:11Z
    date available2022-05-07T20:39:11Z
    date issued2021-10-19
    identifier otherAJRUA6.0001195.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282714
    description abstractIn the last few decades, artificial ground freezing (AGF) has been used as a temporary soil stabilization and waterproofing technique in geotechnical engineering, especially in tunneling construction. In construction, drilling inaccuracy of freeze pipes occurs, slowing the formation of a connected frozen wall and in turn undermining the process of AGF. This study used a hydrothermal coupling finite-element model to investigate the heat transfer and formation of a frozen wall during the progress of AGF. The simulation results indicate that the drilling inaccuracy causes temperature fluctuation at the temperature monitoring point and prolongs the formation time of the frozen wall. The maximum drilling inaccuracy allowed in practice is recommended to be 0.2 m based on the model (established using the shield tunneling of Nanjing Subway Line 10). The low-temperature zone develops unevenly and finally forms a complete frozen wall with an elliptical ring in the presence of the seepage flow. Thus, the location of the temperature monitoring points needs to be reconsidered, rather than being distributed evenly around the perimeter of the tunnel in practical engineering, and more monitoring points should be placed to monitor the formation of the frozen wall.
    publisherASCE
    titleHydrothermal Performance of In-Tunnel Ground Freezing Subjected to Drilling Inaccuracy and Seepage Flow
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001195
    journal fristpage04021071
    journal lastpage04021071-11
    page11
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2021:;Volume ( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian