YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indoor Comfort Achieved Exclusively From Ambient Sources Across US Climates

    Source: Journal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 006::page 061005-1
    Author:
    Keith Sharp, M.
    DOI: 10.1115/1.4051263
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study tests the feasibility of a more climate-friendly approach to space conditioning. This new strategy (called Ambient House) employs thermal mass in conjunction with ambient sources of heat and cold to maintain indoor temperature within a comfortable range with no auxiliary energy. Buildings in 11 US climate zones were simulated as first-order systems with envelope losses, internal heat gains, solar gains, and heat rejection by natural ventilation. Building similitude parameters were adjusted to maintain indoor temperature within a range of 20–25 °C. Building performance is defined by two mathematical parameters. First, the asymptotic temperature difference, which is a ratio of solar and internal heat gains to envelope losses and ventilation cooling, also incorporates control functions for solar heating and ventilation cooling. Second, the building time constant is the ratio of thermal capacitance to envelope losses and ventilation cooling. Temperature response was compared with that of buildings with the same characteristics, except low thermal mass. Without auxiliary heating and cooling and without active controls, low mass buildings reached temperatures as low as −3 °C and over 70 °C. With controls, extreme temperatures were still −3 to 40 °C. The Ambient House comfort temperature range was achievable with thermal mass within or near that of conventional construction in all but the hot climates of Miami, New Orleans and Phoenix. In these locations, large thermal mass and high ventilation cooling were required. This study confirms that it is feasible to thermally condition spaces exclusively with ambient sources in all the US climate zones.
    • Download: (602.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indoor Comfort Achieved Exclusively From Ambient Sources Across US Climates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278873
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorKeith Sharp, M.
    date accessioned2022-02-06T05:50:04Z
    date available2022-02-06T05:50:04Z
    date copyright6/1/2021 12:00:00 AM
    date issued2021
    identifier issn0199-6231
    identifier othersol_143_6_061005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278873
    description abstractThis study tests the feasibility of a more climate-friendly approach to space conditioning. This new strategy (called Ambient House) employs thermal mass in conjunction with ambient sources of heat and cold to maintain indoor temperature within a comfortable range with no auxiliary energy. Buildings in 11 US climate zones were simulated as first-order systems with envelope losses, internal heat gains, solar gains, and heat rejection by natural ventilation. Building similitude parameters were adjusted to maintain indoor temperature within a range of 20–25 °C. Building performance is defined by two mathematical parameters. First, the asymptotic temperature difference, which is a ratio of solar and internal heat gains to envelope losses and ventilation cooling, also incorporates control functions for solar heating and ventilation cooling. Second, the building time constant is the ratio of thermal capacitance to envelope losses and ventilation cooling. Temperature response was compared with that of buildings with the same characteristics, except low thermal mass. Without auxiliary heating and cooling and without active controls, low mass buildings reached temperatures as low as −3 °C and over 70 °C. With controls, extreme temperatures were still −3 to 40 °C. The Ambient House comfort temperature range was achievable with thermal mass within or near that of conventional construction in all but the hot climates of Miami, New Orleans and Phoenix. In these locations, large thermal mass and high ventilation cooling were required. This study confirms that it is feasible to thermally condition spaces exclusively with ambient sources in all the US climate zones.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIndoor Comfort Achieved Exclusively From Ambient Sources Across US Climates
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4051263
    journal fristpage061005-1
    journal lastpage061005-8
    page8
    treeJournal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian