YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dip Coating From Density Mismatching Mixture

    Source: Journal of Micro and Nano-Manufacturing:;2021:;volume( 009 ):;issue: 002::page 021003-1
    Author:
    Khoda, Bashir
    ,
    Ahsan, A. M. M. Nazmul
    ,
    Shovon, S. M. Naser
    DOI: 10.1115/1.4051260
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solid transfer technology from mixtures is gaining ever-increasing attention from materials scientists and production engineers due to their high potential in near-net-shaped production of cost-effective engineering components. Dip coating, a wet deposition method, is an effective and straightforward way of thin-film/layers formation. The dipping mixtures are often embedded with inorganic fillers, nanoparticles, or clusters (d < 30 nm) that produce a thin film ranging from nm to couple microns. An increase in the volume of solid transfer by the dipping process can open-up a novel three-dimensional near-net-shape production. However, adding a larger inorganic particle size (>1 μm) or adding a higher solid fraction will increase the solid transfer but may result in a multiphase heterogeneous mixture. In this work, the physical mechanism of an increased volume of solid transfer with a larger spherical particle size (>5 μm) is investigated. Polymer-based glue and evaporating solvent are mixed to construct the liquid carrier system (LCS) for large inorganic hard particles. Moderate volume fraction of inorganic particles (20% < ϕp < 50%) are added into the LCS solution as solid loading. Three levels of binder volume fraction are considered simultaneously to investigate the effect of the solid transfer. Cylindrical AISI 304 steel wire with dia 0.81 mm is used as the substrate for dipping and coating. The coating thickness, weight, and surface packing coverage by the particles are measured in our lab. The results presented the influence of volume fraction of inorganic particle and glue composition on the solid transfer from the heterogeneous mixture.
    • Download: (4.450Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dip Coating From Density Mismatching Mixture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278545
    Collections
    • Journal of Micro and Nano

    Show full item record

    contributor authorKhoda, Bashir
    contributor authorAhsan, A. M. M. Nazmul
    contributor authorShovon, S. M. Naser
    date accessioned2022-02-06T05:41:13Z
    date available2022-02-06T05:41:13Z
    date copyright6/17/2021 12:00:00 AM
    date issued2021
    identifier issn2166-0468
    identifier otherjmnm_009_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278545
    description abstractSolid transfer technology from mixtures is gaining ever-increasing attention from materials scientists and production engineers due to their high potential in near-net-shaped production of cost-effective engineering components. Dip coating, a wet deposition method, is an effective and straightforward way of thin-film/layers formation. The dipping mixtures are often embedded with inorganic fillers, nanoparticles, or clusters (d < 30 nm) that produce a thin film ranging from nm to couple microns. An increase in the volume of solid transfer by the dipping process can open-up a novel three-dimensional near-net-shape production. However, adding a larger inorganic particle size (>1 μm) or adding a higher solid fraction will increase the solid transfer but may result in a multiphase heterogeneous mixture. In this work, the physical mechanism of an increased volume of solid transfer with a larger spherical particle size (>5 μm) is investigated. Polymer-based glue and evaporating solvent are mixed to construct the liquid carrier system (LCS) for large inorganic hard particles. Moderate volume fraction of inorganic particles (20% < ϕp < 50%) are added into the LCS solution as solid loading. Three levels of binder volume fraction are considered simultaneously to investigate the effect of the solid transfer. Cylindrical AISI 304 steel wire with dia 0.81 mm is used as the substrate for dipping and coating. The coating thickness, weight, and surface packing coverage by the particles are measured in our lab. The results presented the influence of volume fraction of inorganic particle and glue composition on the solid transfer from the heterogeneous mixture.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDip Coating From Density Mismatching Mixture
    typeJournal Paper
    journal volume9
    journal issue2
    journal titleJournal of Micro and Nano-Manufacturing
    identifier doi10.1115/1.4051260
    journal fristpage021003-1
    journal lastpage021003-11
    page11
    treeJournal of Micro and Nano-Manufacturing:;2021:;volume( 009 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian