YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure

    Source: Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 008::page 081007-1
    Author:
    Doshi, Mitansh
    ,
    Ning, Xin
    DOI: 10.1115/1.4051332
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a data-driven framework that can accurately predict the buckling loads of composite near-spherical shells (i.e., variants of regular icosahedral shells) under external pressure. This framework utilizes finite element simulations to generate data to train a machine learning regression model based on the open-source algorithm Extreme Gradient Boosting (XGBoost). The trained XGBoost machine learning model can then predict buckling loads of near-spherical shells with a small margin of error without time-consuming finite element simulations. Examples of near-spherical composite shells with various geometries and material layups demonstrate the efficiency and accuracy of the framework. The machine learning model removes the demanding hardware and software requirements on computing buckling loads of near-spherical shells, making it particularly suitable to users without access to those computational resources.
    • Download: (1.465Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278387
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorDoshi, Mitansh
    contributor authorNing, Xin
    date accessioned2022-02-06T05:36:34Z
    date available2022-02-06T05:36:34Z
    date copyright6/21/2021 12:00:00 AM
    date issued2021
    identifier issn0021-8936
    identifier otherjam_88_8_081007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278387
    description abstractThis paper presents a data-driven framework that can accurately predict the buckling loads of composite near-spherical shells (i.e., variants of regular icosahedral shells) under external pressure. This framework utilizes finite element simulations to generate data to train a machine learning regression model based on the open-source algorithm Extreme Gradient Boosting (XGBoost). The trained XGBoost machine learning model can then predict buckling loads of near-spherical shells with a small margin of error without time-consuming finite element simulations. Examples of near-spherical composite shells with various geometries and material layups demonstrate the efficiency and accuracy of the framework. The machine learning model removes the demanding hardware and software requirements on computing buckling loads of near-spherical shells, making it particularly suitable to users without access to those computational resources.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure
    typeJournal Paper
    journal volume88
    journal issue8
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4051332
    journal fristpage081007-1
    journal lastpage081007-12
    page12
    treeJournal of Applied Mechanics:;2021:;volume( 088 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian