Development of LSTM Networks for Predicting Viscoplasticity With Effects of Deformation, Strain Rate, and Temperature HistorySource: Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 007::page 071008-1Author:Benabou, Lahouari
DOI: 10.1115/1.4051115Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In this paper, long short-term memory (LSTM) networks are used in an original way to model the behavior of a viscoplastic material solicited under changing loading conditions. The material behavior is dependent on the history effects of plasticity which can be visible during strain rate jumps or temperature changes. Due to their architecture and internal state (memory), the LSTM networks have the ability to remember past data to update their current state, unlike the traditional artificial neural networks (ANNs) which fail to capture history effects. Specific LSTM networks are designed and trained to reproduce the complex behavior of a viscoplastic solder alloy subjected to strain rate jumps, temperature changes, or loading–unloading cycles. The training data sets are numerically generated using the constitutive viscoplastic law of Anand which is very popular for describing solder alloys. The Anand model serves also as a reference to evaluate the performances of the LSTM networks on new data. It is demonstrated that this class of networks is remarkably well suited for replicating the history plastic effects under all the tested loading conditions.
|
Collections
Show full item record
contributor author | Benabou, Lahouari | |
date accessioned | 2022-02-06T05:36:29Z | |
date available | 2022-02-06T05:36:29Z | |
date copyright | 5/26/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0021-8936 | |
identifier other | jam_88_7_071008.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4278384 | |
description abstract | In this paper, long short-term memory (LSTM) networks are used in an original way to model the behavior of a viscoplastic material solicited under changing loading conditions. The material behavior is dependent on the history effects of plasticity which can be visible during strain rate jumps or temperature changes. Due to their architecture and internal state (memory), the LSTM networks have the ability to remember past data to update their current state, unlike the traditional artificial neural networks (ANNs) which fail to capture history effects. Specific LSTM networks are designed and trained to reproduce the complex behavior of a viscoplastic solder alloy subjected to strain rate jumps, temperature changes, or loading–unloading cycles. The training data sets are numerically generated using the constitutive viscoplastic law of Anand which is very popular for describing solder alloys. The Anand model serves also as a reference to evaluate the performances of the LSTM networks on new data. It is demonstrated that this class of networks is remarkably well suited for replicating the history plastic effects under all the tested loading conditions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Development of LSTM Networks for Predicting Viscoplasticity With Effects of Deformation, Strain Rate, and Temperature History | |
type | Journal Paper | |
journal volume | 88 | |
journal issue | 7 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.4051115 | |
journal fristpage | 071008-1 | |
journal lastpage | 071008-11 | |
page | 11 | |
tree | Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 007 | |
contenttype | Fulltext |