YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys

    Source: Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011::page 0111010-1
    Author:
    Zhang, M.
    ,
    Baxevanis, T.
    DOI: 10.1115/1.4051833
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A 3D finite-strain constitutive model for shape memory alloys (SMAs) is proposed. The model can efficiently describe reversible phase transformation from austenite to self-accommodated and/or oriented martensite, (re)orientation of martensite variants, minor loops, latent heat effects, and tension–compression asymmetry based on the Eulerian logarithmic strain and the corotational logarithmic objective rate. It further accounts for smooth thermomechanical response; temperature dependence of the critical force required for (re)orientation, temperature, and load dependence of the hysteresis width; and asymmetry between forward and reverse phase transformation, and it is flexible enough to address the deformation response in the concurrent presence of several phases, i.e., when austenite, self-accommodated, and oriented martensite co-exist in the microstructure. The ability of the proposed model to describe the aforementioned deformation response characteristics of SMAs under multiaxial, thermomechanical, and nonproportional loading relies on the set of three independent internal variables, i.e., the average volume fraction of martensite variants, their preferred direction, and the magnitude of the induced inelastic strain, which further allow for an implicit description of a fourth internal variable, the volume fraction of oriented as opposed to self-accommodated martensite. The calibration of the model and its numerical implementation in an efficient scheme are presented. The model is validated against experimental results associated with complex thermomechanical paths, including tension/compression/torsion experiments, and the efficiency of its numerical implementation is verified with simulations of the response of a biomedical superelastic SMA stent and an SMA spring actuator.
    • Download: (1.221Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278372
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZhang, M.
    contributor authorBaxevanis, T.
    date accessioned2022-02-06T05:36:08Z
    date available2022-02-06T05:36:08Z
    date copyright8/10/2021 12:00:00 AM
    date issued2021
    identifier issn0021-8936
    identifier otherjam_88_11_111010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278372
    description abstractA 3D finite-strain constitutive model for shape memory alloys (SMAs) is proposed. The model can efficiently describe reversible phase transformation from austenite to self-accommodated and/or oriented martensite, (re)orientation of martensite variants, minor loops, latent heat effects, and tension–compression asymmetry based on the Eulerian logarithmic strain and the corotational logarithmic objective rate. It further accounts for smooth thermomechanical response; temperature dependence of the critical force required for (re)orientation, temperature, and load dependence of the hysteresis width; and asymmetry between forward and reverse phase transformation, and it is flexible enough to address the deformation response in the concurrent presence of several phases, i.e., when austenite, self-accommodated, and oriented martensite co-exist in the microstructure. The ability of the proposed model to describe the aforementioned deformation response characteristics of SMAs under multiaxial, thermomechanical, and nonproportional loading relies on the set of three independent internal variables, i.e., the average volume fraction of martensite variants, their preferred direction, and the magnitude of the induced inelastic strain, which further allow for an implicit description of a fourth internal variable, the volume fraction of oriented as opposed to self-accommodated martensite. The calibration of the model and its numerical implementation in an efficient scheme are presented. The model is validated against experimental results associated with complex thermomechanical paths, including tension/compression/torsion experiments, and the efficiency of its numerical implementation is verified with simulations of the response of a biomedical superelastic SMA stent and an SMA spring actuator.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys
    typeJournal Paper
    journal volume88
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4051833
    journal fristpage0111010-1
    journal lastpage0111010-21
    page21
    treeJournal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian