Electromechanical Model-Based Adaptive Control of Multilayered Dielectric Elastomer Bending ActuatorSource: Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011::page 0111006-1Author:Zhou, Fanghao
,
He, Jin
,
Zhang, Mingqi
,
Xiao, Youhua
,
Chen, Zheng
,
Wong, Tuck-Whye
,
Li, Tiefeng
,
Xu, Zhongbin
,
Luo, Yingwu
DOI: 10.1115/1.4051657Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Dielectric elastomer (DE) possesses attributes such as large deformation and fast response. As a typical DE actuating structure, the multilayered DE bending actuator (MDEBA) is lightweight and can actuate in relatively low voltage without a rigid frame and pre-stretch. These attributes arouse wide research interest in the MDEBA on the application of soft robots. However, due to its large deformation and nonlinear electromechanical dynamics, the control of MDEBA remains highly challenged. Considering the large bending deformation and gravity effect, we develop an electromechanical dynamic model-based control strategy, which can adaptively compensate for the parameter uncertainties during the actuation of MDEBA. Experimental results validate that this control strategy provides highly enhanced control performance compared to the proportional integral derivative (PID) controller. The electromechanical modeling method and dynamic control strategy may guide the further study of MDEBA, soft robots, and flexible devices.
|
Collections
Show full item record
contributor author | Zhou, Fanghao | |
contributor author | He, Jin | |
contributor author | Zhang, Mingqi | |
contributor author | Xiao, Youhua | |
contributor author | Chen, Zheng | |
contributor author | Wong, Tuck-Whye | |
contributor author | Li, Tiefeng | |
contributor author | Xu, Zhongbin | |
contributor author | Luo, Yingwu | |
date accessioned | 2022-02-06T05:36:00Z | |
date available | 2022-02-06T05:36:00Z | |
date copyright | 7/20/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0021-8936 | |
identifier other | jam_88_11_111006.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4278368 | |
description abstract | Dielectric elastomer (DE) possesses attributes such as large deformation and fast response. As a typical DE actuating structure, the multilayered DE bending actuator (MDEBA) is lightweight and can actuate in relatively low voltage without a rigid frame and pre-stretch. These attributes arouse wide research interest in the MDEBA on the application of soft robots. However, due to its large deformation and nonlinear electromechanical dynamics, the control of MDEBA remains highly challenged. Considering the large bending deformation and gravity effect, we develop an electromechanical dynamic model-based control strategy, which can adaptively compensate for the parameter uncertainties during the actuation of MDEBA. Experimental results validate that this control strategy provides highly enhanced control performance compared to the proportional integral derivative (PID) controller. The electromechanical modeling method and dynamic control strategy may guide the further study of MDEBA, soft robots, and flexible devices. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Electromechanical Model-Based Adaptive Control of Multilayered Dielectric Elastomer Bending Actuator | |
type | Journal Paper | |
journal volume | 88 | |
journal issue | 11 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.4051657 | |
journal fristpage | 0111006-1 | |
journal lastpage | 0111006-8 | |
page | 8 | |
tree | Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011 | |
contenttype | Fulltext |