YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Uncertainty Analysis-Based Framework for Data-Driven Computational Mechanics

    Source: Journal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011::page 0111003-1
    Author:
    Guo, Xu
    ,
    Du, Zongliang
    ,
    Liu, Chang
    ,
    Tang, Shan
    DOI: 10.1115/1.4051594
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this article, a new uncertainty analysis-based framework for data-driven computational mechanics (DDCM) is established. Compared with its practical classical counterpart, the distinctive feature of this framework is that uncertainty analysis is introduced into the corresponding problem formulation explicitly. Instated of only focusing on a single solution in phase space, a solution set is sought for to account for the influence of the multisource uncertainties associated with the data set on the data-driven solutions. An illustrative example provided shows that the proposed framework is not only conceptually new but also has the potential of circumventing the intrinsic numerical difficulties pertaining to the classical DDCM framework.
    • Download: (415.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Uncertainty Analysis-Based Framework for Data-Driven Computational Mechanics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278365
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorGuo, Xu
    contributor authorDu, Zongliang
    contributor authorLiu, Chang
    contributor authorTang, Shan
    date accessioned2022-02-06T05:35:56Z
    date available2022-02-06T05:35:56Z
    date copyright7/12/2021 12:00:00 AM
    date issued2021
    identifier issn0021-8936
    identifier otherjam_88_11_111003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278365
    description abstractIn this article, a new uncertainty analysis-based framework for data-driven computational mechanics (DDCM) is established. Compared with its practical classical counterpart, the distinctive feature of this framework is that uncertainty analysis is introduced into the corresponding problem formulation explicitly. Instated of only focusing on a single solution in phase space, a solution set is sought for to account for the influence of the multisource uncertainties associated with the data set on the data-driven solutions. An illustrative example provided shows that the proposed framework is not only conceptually new but also has the potential of circumventing the intrinsic numerical difficulties pertaining to the classical DDCM framework.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA New Uncertainty Analysis-Based Framework for Data-Driven Computational Mechanics
    typeJournal Paper
    journal volume88
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4051594
    journal fristpage0111003-1
    journal lastpage0111003-6
    page6
    treeJournal of Applied Mechanics:;2021:;volume( 088 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian