YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 012::page 0121008-1
    Author:
    Iseli, Elia
    ,
    Schiffmann, Jürg
    DOI: 10.1115/1.4052025
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The dynamic behavior of spiral-grooved gas bearing supported four degrees-of-freedom (DOF) rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The transient method consists of a state-space representation, which couples the equations of motion with the compressible thin-film fluid equation. The linearized method is based on the perturbation analysis around a given eccentric shaft position ε, allowing to compute the static and linear dynamic bearing force coefficients at different excitation frequencies. The two methods are compared for a variation of test rotors and bearing geometries in a given compressibility number interval of Λ=[0,40]. The limitations and weaknesses of the linearized model are presented. It is shown that shafts with two symmetric herringbone-grooved journal bearings (HGJBs) have their maximum stability and load capacity if the center of gravity lays in the middle of the two bearings. For symmetric rotors (la/lb=1), the two rigid modes, cylindrical and conical, are present and are influenced by the mass and transverse moment of inertia independently. For asymmetric rotors (la/lb<1), the stability region decreases, and the modes have a mixed shape. It is no longer possible to clearly distinguish between pure cylindrical and pure conical mode shapes. The two methods predict the critical mass and critical transverse moment of inertias within a difference of <7%. A quasi-linear unbalance module for rigid gas bearing supported rotors is presented, which considers eccentricity-dependent bearing force coefficients, allowing to speed up the unbalance response analysis by 4 orders of magnitude. The unbalance module is compared with the full transient orbital analysis, suggesting that the quasi-linear module predicts the nonlinear unbalance response with <6% deviation for amplitudes up to ε<0.5 within the complete compressibility number range.
    • Download: (1.572Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278246
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorIseli, Elia
    contributor authorSchiffmann, Jürg
    date accessioned2022-02-06T05:32:30Z
    date available2022-02-06T05:32:30Z
    date copyright10/4/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_12_121008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278246
    description abstractThe dynamic behavior of spiral-grooved gas bearing supported four degrees-of-freedom (DOF) rotors is investigated by means of linearized bearing force coefficients and full time-integrated transient analysis. The transient method consists of a state-space representation, which couples the equations of motion with the compressible thin-film fluid equation. The linearized method is based on the perturbation analysis around a given eccentric shaft position ε, allowing to compute the static and linear dynamic bearing force coefficients at different excitation frequencies. The two methods are compared for a variation of test rotors and bearing geometries in a given compressibility number interval of Λ=[0,40]. The limitations and weaknesses of the linearized model are presented. It is shown that shafts with two symmetric herringbone-grooved journal bearings (HGJBs) have their maximum stability and load capacity if the center of gravity lays in the middle of the two bearings. For symmetric rotors (la/lb=1), the two rigid modes, cylindrical and conical, are present and are influenced by the mass and transverse moment of inertia independently. For asymmetric rotors (la/lb<1), the stability region decreases, and the modes have a mixed shape. It is no longer possible to clearly distinguish between pure cylindrical and pure conical mode shapes. The two methods predict the critical mass and critical transverse moment of inertias within a difference of <7%. A quasi-linear unbalance module for rigid gas bearing supported rotors is presented, which considers eccentricity-dependent bearing force coefficients, allowing to speed up the unbalance response analysis by 4 orders of magnitude. The unbalance module is compared with the full transient orbital analysis, suggesting that the quasi-linear module predicts the nonlinear unbalance response with <6% deviation for amplitudes up to ε<0.5 within the complete compressibility number range.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStability and Unbalance Analysis of Rigid Rotors Supported by Spiral Groove Bearings: Comparison of Different Approaches
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4052025
    journal fristpage0121008-1
    journal lastpage0121008-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian