YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Evaluation and High-Speed Rotating Test on Circular Arc Spring Dampers for Centrifugal Compressors

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 012::page 0121006-1
    Author:
    Takeuchi, Ryota
    ,
    Ishimaru, Hidetsugu
    ,
    Yamashita, Hideaki
    ,
    Inoue, Takahiko
    ,
    Yabui, Shota
    ,
    Inoue, Tsuyoshi
    DOI: 10.1115/1.4051986
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A circular arc spring damper (CASD) is a recently proposed fluid-film damper that has two or more arc-shaped centering springs and dual radial clearances formed by wire electric discharge machining (WEDM). CASD requires less space and weight than a conventional cage-centered squeeze-film damper (SFD). It provides linear stiffness and stable damping force in rotor-bearing systems to attenuate vibration due to imbalance or to improve rotordynamic stability. The authors have been investigated the dynamic characteristics of CASD in component-level experiments. However, their performance and applicability to real machines have not been confirmed in system-level experiments. Additionally, a theoretical means of evaluation for CASD should be established to predict its dynamic coefficients and to understand the mechanism of dynamic force generation. In the first part of this study, a numerical evaluation method using two-way fluid–structure interaction (FSI) analysis and its theoretical background is presented. Transient structural analysis and fluid-film flow analysis with a simple homogeneous cavitation model are coupled in the commercial multiphysics platform ansys. The accuracy of the method was validated by comparing the damping and added-mass coefficients with results from previous experiments. Furthermore, several aspects of the force generation mechanism and the difference from conventional SFD were studied numerically. The second part of the study addresses the application of CASD in a multistage centrifugal compressor. A combined 4-in. diameter, five-pad tilting pad journal bearing (TPJB) with four-arc type CASD was newly designed and manufactured. To prove the applicability of the developed damper bearing, a series of rotating tests were conducted at a high-speed balancing facility with a full-scale dummy rotor with a critical speed ratio (CSR) of approximately 3.1. The measured unbalance response showed a much lower amplification factor (AF) than that of the conventional TPJB without the damper, which infers a significant improvement in the stability. The measured responses agreed with the rotordynamic analysis, which uses the dynamic coefficients of CASD derived from the proposed numerical evaluation method.
    • Download: (3.035Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Evaluation and High-Speed Rotating Test on Circular Arc Spring Dampers for Centrifugal Compressors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278244
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorTakeuchi, Ryota
    contributor authorIshimaru, Hidetsugu
    contributor authorYamashita, Hideaki
    contributor authorInoue, Takahiko
    contributor authorYabui, Shota
    contributor authorInoue, Tsuyoshi
    date accessioned2022-02-06T05:32:26Z
    date available2022-02-06T05:32:26Z
    date copyright10/4/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_12_121006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278244
    description abstractA circular arc spring damper (CASD) is a recently proposed fluid-film damper that has two or more arc-shaped centering springs and dual radial clearances formed by wire electric discharge machining (WEDM). CASD requires less space and weight than a conventional cage-centered squeeze-film damper (SFD). It provides linear stiffness and stable damping force in rotor-bearing systems to attenuate vibration due to imbalance or to improve rotordynamic stability. The authors have been investigated the dynamic characteristics of CASD in component-level experiments. However, their performance and applicability to real machines have not been confirmed in system-level experiments. Additionally, a theoretical means of evaluation for CASD should be established to predict its dynamic coefficients and to understand the mechanism of dynamic force generation. In the first part of this study, a numerical evaluation method using two-way fluid–structure interaction (FSI) analysis and its theoretical background is presented. Transient structural analysis and fluid-film flow analysis with a simple homogeneous cavitation model are coupled in the commercial multiphysics platform ansys. The accuracy of the method was validated by comparing the damping and added-mass coefficients with results from previous experiments. Furthermore, several aspects of the force generation mechanism and the difference from conventional SFD were studied numerically. The second part of the study addresses the application of CASD in a multistage centrifugal compressor. A combined 4-in. diameter, five-pad tilting pad journal bearing (TPJB) with four-arc type CASD was newly designed and manufactured. To prove the applicability of the developed damper bearing, a series of rotating tests were conducted at a high-speed balancing facility with a full-scale dummy rotor with a critical speed ratio (CSR) of approximately 3.1. The measured unbalance response showed a much lower amplification factor (AF) than that of the conventional TPJB without the damper, which infers a significant improvement in the stability. The measured responses agreed with the rotordynamic analysis, which uses the dynamic coefficients of CASD derived from the proposed numerical evaluation method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Evaluation and High-Speed Rotating Test on Circular Arc Spring Dampers for Centrifugal Compressors
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4051986
    journal fristpage0121006-1
    journal lastpage0121006-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian