YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurements of Static and Dynamic Load Performance of a 102 MM Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 011::page 0111017-1
    Author:
    San Andrés, Luis
    ,
    Yang, Jing
    ,
    McGowan, Ryan
    DOI: 10.1115/1.4051965
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aerostatic journal bearings with porous tilting pads enable shaft support with minute drag power losses. To date archival information on the static and dynamic load performance of this bearing type is scant. Thus, the paper presents measurements conducted with an air lubricated bearing with diameter d = 102 mm and comprising four tilting pads made of porous carbon-graphite, each with length L = 76 mm. Two nested Belleville washers resting on spherical pivots support each pad. At ambient temperature of ∼ 21 °C, as the air supply pressure into the bearing pads increases, so does the bearing aerostatic specific load (F/(L·d)) that reaches 58% of the pressure difference, supply minus ambient. With an air supply pressure of 7.8 bar(a), the test bearing static stiffness KS = 13.1 MN/m, is independent of both shaft speed and static load. KS is just 63% of the washers' stiffness KP = 20.6 MN/m (during loading). While operating with shaft speeds equal to 6 krpm and 9 krpm (150 Hz) and under specific loads to 115 kPa and 101 kPa, respectively, dynamic load experiments with excitation frequencies up to 342 Hz show the test bearing supplied with air at 7.8 bar(a) has frequency independent stiffness (K) and damping (C) coefficients. For rotor speeds equaling 0, 6 and 9 krpm, the bearing direct stiffnesses KXX ∼ KYY range from 13.6 MN/m to 32.7 MN/m as the specific load increases from 0 kPa to 115 kPa. The direct damping coefficients CXX ∼ CYY are as large as 5.8 kN·s/m, though having a large experimental uncertainty. Bearing cross-coupled force coefficients are insignificant. The test porous gas bearing reached its intended load capacity, demonstrated a dynamically stable operation and produced force coefficients mainly affected by the pads' pivot supports and the magnitude of air supply pressurization.
    • Download: (3.052Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurements of Static and Dynamic Load Performance of a 102 MM Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278227
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSan Andrés, Luis
    contributor authorYang, Jing
    contributor authorMcGowan, Ryan
    date accessioned2022-02-06T05:31:55Z
    date available2022-02-06T05:31:55Z
    date copyright10/4/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_11_111017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278227
    description abstractAerostatic journal bearings with porous tilting pads enable shaft support with minute drag power losses. To date archival information on the static and dynamic load performance of this bearing type is scant. Thus, the paper presents measurements conducted with an air lubricated bearing with diameter d = 102 mm and comprising four tilting pads made of porous carbon-graphite, each with length L = 76 mm. Two nested Belleville washers resting on spherical pivots support each pad. At ambient temperature of ∼ 21 °C, as the air supply pressure into the bearing pads increases, so does the bearing aerostatic specific load (F/(L·d)) that reaches 58% of the pressure difference, supply minus ambient. With an air supply pressure of 7.8 bar(a), the test bearing static stiffness KS = 13.1 MN/m, is independent of both shaft speed and static load. KS is just 63% of the washers' stiffness KP = 20.6 MN/m (during loading). While operating with shaft speeds equal to 6 krpm and 9 krpm (150 Hz) and under specific loads to 115 kPa and 101 kPa, respectively, dynamic load experiments with excitation frequencies up to 342 Hz show the test bearing supplied with air at 7.8 bar(a) has frequency independent stiffness (K) and damping (C) coefficients. For rotor speeds equaling 0, 6 and 9 krpm, the bearing direct stiffnesses KXX ∼ KYY range from 13.6 MN/m to 32.7 MN/m as the specific load increases from 0 kPa to 115 kPa. The direct damping coefficients CXX ∼ CYY are as large as 5.8 kN·s/m, though having a large experimental uncertainty. Bearing cross-coupled force coefficients are insignificant. The test porous gas bearing reached its intended load capacity, demonstrated a dynamically stable operation and produced force coefficients mainly affected by the pads' pivot supports and the magnitude of air supply pressurization.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurements of Static and Dynamic Load Performance of a 102 MM Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4051965
    journal fristpage0111017-1
    journal lastpage0111017-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian