Measurements to Quantify the Effect of a Reduced Flow Rate on the Performance of a Tilting Pad Journal Bearing With Flooded EndsSource: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 011::page 0111012-1DOI: 10.1115/1.4052268Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Operation of tilting pad journal bearings (TPJBs) with a reduced flow decreases pumping costs and oil sump storage. A low supplied oil flow improves system energy efficiency by reducing drag power losses, albeit the temperature rise in both the bearing pads and the lubricating oil become a concern. This paper presents measurements of the static and dynamic load performance of a flooded ends TPJB lubricated with an ISO VG 46 oil supplied at 60 °C, and with a flow rate ranging from 150% to just ∼5% of a nominal supply condition. The flow range covers both over-flooded and starved flow conditions. The test bearing is a four-pad, 102 mm diameter, center pivot, with single orifice feeds, and configured with end seals to flood the bearing housing. The experiments include operation at two shaft speeds = 6 krpm and 12 krpm (= 64 m/s surface speed) and under three specific loads = 0.345 MPa, 1.03 MPa, and 2.07 MPa applied in between pads (LBP). The measurements show the bearing drag power loss decreases by nearly 20% when the flow rate drops to 50% of nominal. However, halving the flow produces a raise in pad subsurface temperatures, ∼7 °C for operation at 12 krpm. Flow reduction below 50% does result in even more substantial power savings; however, it also produces too hot pad temperatures that approach 130 °C, a known limit for Babbitt material safe operation. The bearing static eccentricity (e) and direct stiffnesses Kxx < Kyy (load direction) do not show a significant dependency on the supplied flow, either above or below the nominal condition. A minor stiffness hardening does occur for very low flow conditions, 5% or so of nominal. Damping coefficients (Cxx ∼ Cyy) decrease by ∼30% as the flow rate decreases from 150% to just a few % of the nominal flow. The experimental results are first to quantify the operation of a TPJB supplied with minute amounts of lubricant flow. A test with a very low flow rate at ∼2% of nominal and under a light load produced the emergence of a broadband subsynchronous vibration (SSV) frequency, albeit with a very small amplitude.
|
Show full item record
contributor author | San Andrés, Luis | |
contributor author | Toner, Jonathan | |
contributor author | Alcantar, Andy | |
date accessioned | 2022-02-06T05:31:49Z | |
date available | 2022-02-06T05:31:49Z | |
date copyright | 9/30/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0742-4795 | |
identifier other | gtp_143_11_111012.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4278223 | |
description abstract | Operation of tilting pad journal bearings (TPJBs) with a reduced flow decreases pumping costs and oil sump storage. A low supplied oil flow improves system energy efficiency by reducing drag power losses, albeit the temperature rise in both the bearing pads and the lubricating oil become a concern. This paper presents measurements of the static and dynamic load performance of a flooded ends TPJB lubricated with an ISO VG 46 oil supplied at 60 °C, and with a flow rate ranging from 150% to just ∼5% of a nominal supply condition. The flow range covers both over-flooded and starved flow conditions. The test bearing is a four-pad, 102 mm diameter, center pivot, with single orifice feeds, and configured with end seals to flood the bearing housing. The experiments include operation at two shaft speeds = 6 krpm and 12 krpm (= 64 m/s surface speed) and under three specific loads = 0.345 MPa, 1.03 MPa, and 2.07 MPa applied in between pads (LBP). The measurements show the bearing drag power loss decreases by nearly 20% when the flow rate drops to 50% of nominal. However, halving the flow produces a raise in pad subsurface temperatures, ∼7 °C for operation at 12 krpm. Flow reduction below 50% does result in even more substantial power savings; however, it also produces too hot pad temperatures that approach 130 °C, a known limit for Babbitt material safe operation. The bearing static eccentricity (e) and direct stiffnesses Kxx < Kyy (load direction) do not show a significant dependency on the supplied flow, either above or below the nominal condition. A minor stiffness hardening does occur for very low flow conditions, 5% or so of nominal. Damping coefficients (Cxx ∼ Cyy) decrease by ∼30% as the flow rate decreases from 150% to just a few % of the nominal flow. The experimental results are first to quantify the operation of a TPJB supplied with minute amounts of lubricant flow. A test with a very low flow rate at ∼2% of nominal and under a light load produced the emergence of a broadband subsynchronous vibration (SSV) frequency, albeit with a very small amplitude. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Measurements to Quantify the Effect of a Reduced Flow Rate on the Performance of a Tilting Pad Journal Bearing With Flooded Ends | |
type | Journal Paper | |
journal volume | 143 | |
journal issue | 11 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4052268 | |
journal fristpage | 0111012-1 | |
journal lastpage | 0111012-12 | |
page | 12 | |
tree | Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 011 | |
contenttype | Fulltext |