YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of a Simplified Aeroengine Bearing Chamber Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part I: Film Behavior Near the Bearing

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 010::page 0101015-1
    Author:
    Nicoli, Andrew
    ,
    Johnson, Kathy
    ,
    Jefferson-Loveday, Richard
    DOI: 10.1115/1.4051560
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Previous work at the Gas Turbine and Transmissions Research Center (G2TRC) has highlighted the need for an adequate computational model, which can appropriately model the oil shedding behavior from bearings. Oil can break up forming droplets and ligaments, subsequently forming thin and thick films driven by both gravity and shear. Our previously published work using openfoam successfully coupled the Eulerian thin film model (ETFM) with the discrete phase model (DPM) (Nicoli et al., 2019, “A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications,” ASME Paper No. GT2019-90264.). In this paper, the previously developed ETFM-DPM capability is, for the first time, extended to an aeroengine representative bearing chamber configuration. The configuration matches that of a simplified aeroengine bearing chamber that has been investigated by researchers at the Gas Turbine and Transmissions Research Center (G2TRC). Numerical investigations are conducted for three different shaft speeds, namely, 5000, 7000, and 12,000 rpm, at two different oil flow rates: 7.3 liters/minute and 5.2 liters/minute. CFD results are validated against existing experimental data for the two lower shaft speeds. Evaluation of computed mean film thickness shows excellent agreement with the experimental data. Results show that there is a diminishing reduction of film thickness with an increasing shaft speed. The computational study allows investigation of oil residence time in the annulus near the bearing. Residence time is seen to reduce with increasing shaft speed and with increasing oil flow rate. This CFD investigation represents the first successful fully coupled two-way ETFM-DPM investigation into the droplet generation process within a bearing chamber application, establishing a firm foundation for future aeroengine bearing chamber modeling.
    • Download: (4.287Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of a Simplified Aeroengine Bearing Chamber Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part I: Film Behavior Near the Bearing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278205
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorNicoli, Andrew
    contributor authorJohnson, Kathy
    contributor authorJefferson-Loveday, Richard
    date accessioned2022-02-06T05:31:17Z
    date available2022-02-06T05:31:17Z
    date copyright9/20/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_10_101015.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278205
    description abstractPrevious work at the Gas Turbine and Transmissions Research Center (G2TRC) has highlighted the need for an adequate computational model, which can appropriately model the oil shedding behavior from bearings. Oil can break up forming droplets and ligaments, subsequently forming thin and thick films driven by both gravity and shear. Our previously published work using openfoam successfully coupled the Eulerian thin film model (ETFM) with the discrete phase model (DPM) (Nicoli et al., 2019, “A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications,” ASME Paper No. GT2019-90264.). In this paper, the previously developed ETFM-DPM capability is, for the first time, extended to an aeroengine representative bearing chamber configuration. The configuration matches that of a simplified aeroengine bearing chamber that has been investigated by researchers at the Gas Turbine and Transmissions Research Center (G2TRC). Numerical investigations are conducted for three different shaft speeds, namely, 5000, 7000, and 12,000 rpm, at two different oil flow rates: 7.3 liters/minute and 5.2 liters/minute. CFD results are validated against existing experimental data for the two lower shaft speeds. Evaluation of computed mean film thickness shows excellent agreement with the experimental data. Results show that there is a diminishing reduction of film thickness with an increasing shaft speed. The computational study allows investigation of oil residence time in the annulus near the bearing. Residence time is seen to reduce with increasing shaft speed and with increasing oil flow rate. This CFD investigation represents the first successful fully coupled two-way ETFM-DPM investigation into the droplet generation process within a bearing chamber application, establishing a firm foundation for future aeroengine bearing chamber modeling.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulation of a Simplified Aeroengine Bearing Chamber Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part I: Film Behavior Near the Bearing
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4051560
    journal fristpage0101015-1
    journal lastpage0101015-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian