YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influence of Cycle-to-Cycle Hydrocarbon Emissions on Cyclic NO:NO2 Ratio From a HSDI Diesel Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 009::page 091016-1
    Author:
    Leach, Felix
    ,
    Shankar, Varun
    ,
    Davy, Martin
    ,
    Peckham, Mark
    DOI: 10.1115/1.4050866
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Knowledge of the NO:NO2 ratio emitted from a diesel engine is particularly important for ensuring the highest performance of selective catalytic reduction (SCR) NOx after-treatment systems. As real driving emissions from vehicles increase in importance, the need to understand the NO:NO2 ratio emitted from a diesel engine during transient operation similarly increases. Previous work by the authors identified significant differences in NO:NO2 ratio throughout the exhaust period of a single-engine cycle, with proportionally more NO2 being emitted during the blowdown period compared to the rest of the exhaust stroke. At the time it was not known what caused this effect. In this study, crank-angle resolved NO and NO2 measurements using fast response chemiluminescence detector (CLD) (for NO) and a new fast laser-induced fluorescence (LIF) instrument (for NO2) have been taken from a single-cylinder high-speed light-duty diesel engine at three different speed and load points including a point with and without exhaust gas recirculation (EGR). In addition, crank-angle resolved unburned hydrocarbon (UHC) measurements have been taken simultaneously using a fast flame ionization detection (FID). The NOx emitted per cycle and the peak cylinder pressure of that cycle have shown high correlation coefficients (R2 < 0.97 at all test points) in this work. In addition, a variation of the NO:NO2 ratio through the engine's exhaust stroke is also observed indicative of in-cylinder stratification of NO and NO2. A new link between the NO:NO2 ratio and the UHC emissions from an individual engine cycle is observed - the results show that where there are higher levels of UHC emissions in the first part of the exhaust stroke (blowdown), perhaps caused by injector dribble or release from crevices, the proportion of NO2 emitted from that cycle is increased. This effect is observed and analyzed across all test points and with and without EGR. The performance of the new fast LIF analyzer has also been evaluated, in comparison with the previous state-of-the-art and standard “slow” emissions measurement apparatus showing a reduction in the noise of the measurement by an order of magnitude.
    • Download: (1.034Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influence of Cycle-to-Cycle Hydrocarbon Emissions on Cyclic NO:NO2 Ratio From a HSDI Diesel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278176
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLeach, Felix
    contributor authorShankar, Varun
    contributor authorDavy, Martin
    contributor authorPeckham, Mark
    date accessioned2022-02-06T05:30:24Z
    date available2022-02-06T05:30:24Z
    date copyright5/31/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_09_091016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278176
    description abstractKnowledge of the NO:NO2 ratio emitted from a diesel engine is particularly important for ensuring the highest performance of selective catalytic reduction (SCR) NOx after-treatment systems. As real driving emissions from vehicles increase in importance, the need to understand the NO:NO2 ratio emitted from a diesel engine during transient operation similarly increases. Previous work by the authors identified significant differences in NO:NO2 ratio throughout the exhaust period of a single-engine cycle, with proportionally more NO2 being emitted during the blowdown period compared to the rest of the exhaust stroke. At the time it was not known what caused this effect. In this study, crank-angle resolved NO and NO2 measurements using fast response chemiluminescence detector (CLD) (for NO) and a new fast laser-induced fluorescence (LIF) instrument (for NO2) have been taken from a single-cylinder high-speed light-duty diesel engine at three different speed and load points including a point with and without exhaust gas recirculation (EGR). In addition, crank-angle resolved unburned hydrocarbon (UHC) measurements have been taken simultaneously using a fast flame ionization detection (FID). The NOx emitted per cycle and the peak cylinder pressure of that cycle have shown high correlation coefficients (R2 < 0.97 at all test points) in this work. In addition, a variation of the NO:NO2 ratio through the engine's exhaust stroke is also observed indicative of in-cylinder stratification of NO and NO2. A new link between the NO:NO2 ratio and the UHC emissions from an individual engine cycle is observed - the results show that where there are higher levels of UHC emissions in the first part of the exhaust stroke (blowdown), perhaps caused by injector dribble or release from crevices, the proportion of NO2 emitted from that cycle is increased. This effect is observed and analyzed across all test points and with and without EGR. The performance of the new fast LIF analyzer has also been evaluated, in comparison with the previous state-of-the-art and standard “slow” emissions measurement apparatus showing a reduction in the noise of the measurement by an order of magnitude.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Influence of Cycle-to-Cycle Hydrocarbon Emissions on Cyclic NO:NO2 Ratio From a HSDI Diesel Engine
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4050866
    journal fristpage091016-1
    journal lastpage091016-6
    page6
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian