YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of a Compact Magnetically Levitated Blower for Space Applications

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 009::page 091012-1
    Author:
    Hawkins, Larry
    ,
    Filatov, Alexei
    ,
    Khatri, Rasish
    ,
    DellaCorte, Chris
    ,
    Howard, S. Adam
    DOI: 10.1115/1.4050755
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: NASA is leading the design and development of a next-generation CO2 removal system, the four bed carbon dioxide scrubber (4BCO2), and intends to use the International Space Station (ISS) as its testbed. A key component of the system is the blower that provides the airflow through the CO2 sorbent beds. To improve performance and reliability, magnetic levitation (magnetic bearings) will be used in lieu of more conventional bearings (e.g., ball bearings or air bearings) to improve resistance to contaminants and enable extensibility with regards to blower speed, pressure rise and mass flow rate. The blower will pull air from the ISS through an adsorbing desiccant bed and push it through a CO2 sorbent bed and desorbing desiccant bed. The 4BCO2 blower features an overhung permanent magnet motor, a centrally located five-axis, active magnetic bearing system, backup bearings, and an overhung centrifugal impeller in a very compact package. Magnetic bearings are a natural choice for this application due to low power consumption, low transmitted vibration and oil free operation. This article describes the design considerations and design selections for the blower system with a focus on the magnetic bearings. Magnetic FEA of the actuator/sensor system, rotordynamics/controls analysis, and backup bearing drop simulations are discussed in detail. It is expected that the successful implementation of magnetic bearings for this space application will encourage the more widespread adoption in other space applications (e.g., fluid pumps, reaction wheels) that challenge conventional bearing technologies.
    • Download: (3.866Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of a Compact Magnetically Levitated Blower for Space Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278171
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHawkins, Larry
    contributor authorFilatov, Alexei
    contributor authorKhatri, Rasish
    contributor authorDellaCorte, Chris
    contributor authorHoward, S. Adam
    date accessioned2022-02-06T05:30:15Z
    date available2022-02-06T05:30:15Z
    date copyright5/13/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_09_091012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278171
    description abstractNASA is leading the design and development of a next-generation CO2 removal system, the four bed carbon dioxide scrubber (4BCO2), and intends to use the International Space Station (ISS) as its testbed. A key component of the system is the blower that provides the airflow through the CO2 sorbent beds. To improve performance and reliability, magnetic levitation (magnetic bearings) will be used in lieu of more conventional bearings (e.g., ball bearings or air bearings) to improve resistance to contaminants and enable extensibility with regards to blower speed, pressure rise and mass flow rate. The blower will pull air from the ISS through an adsorbing desiccant bed and push it through a CO2 sorbent bed and desorbing desiccant bed. The 4BCO2 blower features an overhung permanent magnet motor, a centrally located five-axis, active magnetic bearing system, backup bearings, and an overhung centrifugal impeller in a very compact package. Magnetic bearings are a natural choice for this application due to low power consumption, low transmitted vibration and oil free operation. This article describes the design considerations and design selections for the blower system with a focus on the magnetic bearings. Magnetic FEA of the actuator/sensor system, rotordynamics/controls analysis, and backup bearing drop simulations are discussed in detail. It is expected that the successful implementation of magnetic bearings for this space application will encourage the more widespread adoption in other space applications (e.g., fluid pumps, reaction wheels) that challenge conventional bearing technologies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of a Compact Magnetically Levitated Blower for Space Applications
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4050755
    journal fristpage091012-1
    journal lastpage091012-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian