YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004::page 041030-1
    Author:
    Luberti, Dario
    ,
    Patinios, Marios
    ,
    Jackson, Richard W.
    ,
    Tang, Hui
    ,
    Pountney, Oliver J.
    ,
    Scobie, James A.
    ,
    Sangan, Carl M.
    ,
    Owen, J. Michael
    ,
    Lock, Gary D.
    DOI: 10.1115/1.4048601
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The change in compressor blade-tip clearance across the flight cycle depends on the expansion of the rotor, which in turn depends on the temperature and stress in the disks. The radial distribution of temperature is directly coupled to the buoyancy-driven flow and heat transfer in the rotating disk cavities. This paper describes a new test rig specifically designed to investigate this conjugate phenomenon. The rig test section includes four rotating disks enclosing three cavities. Two disks in the central cavity are instrumented with thermocouples to provide the radial distribution of temperature; the two outer cavities are thermally insulated to create appropriate boundary conditions for the heat transfer analysis. An axial throughflow of air is supplied between a stationary shaft and the bore of the disks. The temperature of the throughflow air is measured by thermocouples in rakes upstream and downstream of the central cavity. For a cold throughflow, the outer shroud of the central cavity is heated. Two independently controlled radiant heaters allow differential shroud temperatures for the upstream and downstream disks, as found in aero-engine compressors. Alternatively, the throughflow can be heated above the shroud temperature to simulate the transient conditions during engine operation where stratified flow can occur inside the cavity. The rig is designed to operate in conditions where both convective and radiative heat transfer dominate; all internal surfaces of the cavity are painted matt black to allow the accurate calculation of the radiant heat transfer. Separate attachments can be fitted to the cobs of both central disks; the attachments reduce the axial gap between the cobs—reducing the gap to zero creates a closed cavity, which can occur in some compressor designs. Other instrumentation includes heat-flux gages on the shroud and high-frequency pressure transducers embedded into the disk diaphragm to capture unsteady flow structures. Attention has been given to experimental uncertainty, including the computation of the thermal-disturbance errors, caused by thermocouples embedded in the rotating disks; a Bayesian statistical model is used to reduce the effect of uncertainties in temperature measurements on the calculation of the Nusselt number. The effect of relevant nondimensional parameters on the radial distribution of the disk and throughflow temperatures has been shown for some typical cases.
    • Download: (2.360Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278148
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLuberti, Dario
    contributor authorPatinios, Marios
    contributor authorJackson, Richard W.
    contributor authorTang, Hui
    contributor authorPountney, Oliver J.
    contributor authorScobie, James A.
    contributor authorSangan, Carl M.
    contributor authorOwen, J. Michael
    contributor authorLock, Gary D.
    date accessioned2022-02-06T05:29:38Z
    date available2022-02-06T05:29:38Z
    date copyright3/15/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_04_041030.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278148
    description abstractThe change in compressor blade-tip clearance across the flight cycle depends on the expansion of the rotor, which in turn depends on the temperature and stress in the disks. The radial distribution of temperature is directly coupled to the buoyancy-driven flow and heat transfer in the rotating disk cavities. This paper describes a new test rig specifically designed to investigate this conjugate phenomenon. The rig test section includes four rotating disks enclosing three cavities. Two disks in the central cavity are instrumented with thermocouples to provide the radial distribution of temperature; the two outer cavities are thermally insulated to create appropriate boundary conditions for the heat transfer analysis. An axial throughflow of air is supplied between a stationary shaft and the bore of the disks. The temperature of the throughflow air is measured by thermocouples in rakes upstream and downstream of the central cavity. For a cold throughflow, the outer shroud of the central cavity is heated. Two independently controlled radiant heaters allow differential shroud temperatures for the upstream and downstream disks, as found in aero-engine compressors. Alternatively, the throughflow can be heated above the shroud temperature to simulate the transient conditions during engine operation where stratified flow can occur inside the cavity. The rig is designed to operate in conditions where both convective and radiative heat transfer dominate; all internal surfaces of the cavity are painted matt black to allow the accurate calculation of the radiant heat transfer. Separate attachments can be fitted to the cobs of both central disks; the attachments reduce the axial gap between the cobs—reducing the gap to zero creates a closed cavity, which can occur in some compressor designs. Other instrumentation includes heat-flux gages on the shroud and high-frequency pressure transducers embedded into the disk diaphragm to capture unsteady flow structures. Attention has been given to experimental uncertainty, including the computation of the thermal-disturbance errors, caused by thermocouples embedded in the rotating disks; a Bayesian statistical model is used to reduce the effect of uncertainties in temperature measurements on the calculation of the Nusselt number. The effect of relevant nondimensional parameters on the radial distribution of the disk and throughflow temperatures has been shown for some typical cases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048601
    journal fristpage041030-1
    journal lastpage041030-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian