YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Acoustic Energy Balance During the Onset, Growth, and Saturation of Thermoacoustic Instabilities

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004::page 041026-1
    Author:
    Gaudron, R.
    ,
    Yang, D.
    ,
    Morgans, A. S.
    DOI: 10.1115/1.4049347
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh's criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor's boundaries, and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.
    • Download: (765.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Acoustic Energy Balance During the Onset, Growth, and Saturation of Thermoacoustic Instabilities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278145
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGaudron, R.
    contributor authorYang, D.
    contributor authorMorgans, A. S.
    date accessioned2022-02-06T05:29:34Z
    date available2022-02-06T05:29:34Z
    date copyright3/10/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_04_041026.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278145
    description abstractThermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh's criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor's boundaries, and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAcoustic Energy Balance During the Onset, Growth, and Saturation of Thermoacoustic Instabilities
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4049347
    journal fristpage041026-1
    journal lastpage041026-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian