YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigations on the Leakage Flow Characteristics of Brush Seal Based on the Three-Dimensional Staggered Tube Bundle Model

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 005::page 051023-1
    Author:
    Ma, Dengqian
    ,
    Zhang, Yuanqiao
    ,
    Li, Zhigang
    ,
    Li, Jun
    ,
    Yan, Xin
    DOI: 10.1115/1.4050157
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratio Rp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx, i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx, i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.
    • Download: (3.939Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigations on the Leakage Flow Characteristics of Brush Seal Based on the Three-Dimensional Staggered Tube Bundle Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277412
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMa, Dengqian
    contributor authorZhang, Yuanqiao
    contributor authorLi, Zhigang
    contributor authorLi, Jun
    contributor authorYan, Xin
    date accessioned2022-02-05T22:22:07Z
    date available2022-02-05T22:22:07Z
    date copyright3/15/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_05_051023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277412
    description abstractTo accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratio Rp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx, i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx, i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigations on the Leakage Flow Characteristics of Brush Seal Based on the Three-Dimensional Staggered Tube Bundle Model
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4050157
    journal fristpage051023-1
    journal lastpage051023-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian