YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Equivalent Linearization of Bladed Disk Assemblies With Friction Nonlinearities Under Random Excitation

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 005::page 051005-1
    Author:
    Förster, Alwin
    ,
    Panning-von Scheidt, Lars
    ,
    Wallaschek, Jörg
    DOI: 10.1115/1.4048407
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article addresses the vibrational behavior of bladed disk assemblies with nonlinear shroud coupling under random excitation. In order to increase the service life and safety of turbine blades, intense calculations are carried out to predict the vibrational behavior. The use of friction dampers for energy dissipation and suppression of large amplitudes makes the mechanical system nonlinear, which complicates the calculations. Depending on the stage, different types of excitation can occur in a turbine, from clearly defined deterministic to random excitation. So far, the latter problem has only been dealt with to a limited extent in the literature on turbomachinery. Nevertheless, there are in general different approaches and methods to address this problem most of which are strongly restricted with regard to the number of degrees-of-freedom (DOF). The focus of this paper is the application of an equivalent linearization method (ELM) to calculate the stochastic response of an academic model of a bladed disk assembly under random excitation. The nonlinear contact is modeled both with an elastic Coulomb-slider and a Bouc–Wen formulation to reproduce the hysteretic character of a friction nonlinearity occurring in the presence of a friction damper. Both the excitation and the response are limited to mean-free, stationary stochastic processes, which means that the stochastic moments do not change over time. Unlike previous papers on this topic, the calculations are performed on a full bladed disk assembly in which each segment is approximated with several degrees-of-freedom.
    • Download: (1.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Equivalent Linearization of Bladed Disk Assemblies With Friction Nonlinearities Under Random Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277393
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFörster, Alwin
    contributor authorPanning-von Scheidt, Lars
    contributor authorWallaschek, Jörg
    date accessioned2022-02-05T22:21:27Z
    date available2022-02-05T22:21:27Z
    date copyright3/11/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_05_051005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277393
    description abstractThis article addresses the vibrational behavior of bladed disk assemblies with nonlinear shroud coupling under random excitation. In order to increase the service life and safety of turbine blades, intense calculations are carried out to predict the vibrational behavior. The use of friction dampers for energy dissipation and suppression of large amplitudes makes the mechanical system nonlinear, which complicates the calculations. Depending on the stage, different types of excitation can occur in a turbine, from clearly defined deterministic to random excitation. So far, the latter problem has only been dealt with to a limited extent in the literature on turbomachinery. Nevertheless, there are in general different approaches and methods to address this problem most of which are strongly restricted with regard to the number of degrees-of-freedom (DOF). The focus of this paper is the application of an equivalent linearization method (ELM) to calculate the stochastic response of an academic model of a bladed disk assembly under random excitation. The nonlinear contact is modeled both with an elastic Coulomb-slider and a Bouc–Wen formulation to reproduce the hysteretic character of a friction nonlinearity occurring in the presence of a friction damper. Both the excitation and the response are limited to mean-free, stationary stochastic processes, which means that the stochastic moments do not change over time. Unlike previous papers on this topic, the calculations are performed on a full bladed disk assembly in which each segment is approximated with several degrees-of-freedom.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEquivalent Linearization of Bladed Disk Assemblies With Friction Nonlinearities Under Random Excitation
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048407
    journal fristpage051005-1
    journal lastpage051005-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian