YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ignition Probability and Lean Ignition Behavior of a Swirled Premixed Bluff Body Stabilized Annular Combustor

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004::page 041024-1
    Author:
    Ciardiello, Roberto
    ,
    Pathania, Rohit S.
    ,
    Allison, Patton M.
    ,
    de Oliveira, Pedro M.
    ,
    Mastorakos, Epaminondas
    DOI: 10.1115/1.4048461
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental investigation was performed in a premixed annular combustor equipped with multiple swirl, bluff body burners to assess the ignition probability and to provide insights into the mechanisms of failure and of successful flame propagation. The experiments are done at conditions that are close to the lean blow-off (LBO) limit, and hence, the ignition is difficult and close to the limiting condition when ignition is not possible. Two configurations were employed, with 12 and 18 burners, the mixture velocity was varied between 10 and 30 m/s, and the equivalence ratio (ϕ) between 0.58 and 0.68. Ignition was initiated by a sequence of sparks (2 mm gap, 10 sparks of 10 ms each) and “ignition” is defined as successful ignition of the whole annular combustor. The mechanism of success and failure of the ignition process and the flame propagation patterns were investigated via high-speed imaging (10 kHz) of OH* chemiluminescence. The lean ignition limits were evaluated and compared to the LBO limits, finding the 12-burner configuration is more stable than the 18-burner. It was found that failure is linked to the trapping of the initial flame kernel inside the inner recirculation zone (IRZ) of a single burner adjacent to the spark, followed by localized quenching on the bluff body probably due to heat losses. In contrast, for a successful ignition, it was necessary for the flame kernel to propagate to the adjacent burner or for a flame pocket to be convected downstream in the chamber to grow and start propagating upward. Finally, the ignition probability (Pign) was obtained for different spark locations. It was found that sparking inside the recirculation zone resulted in Pign∼0 for most conditions, while Pign increased moving the spark away from the bluff body or placing it between two burners and peaked to Pign∼1 when the spark was located downstream in the combustion chamber, where the velocities are lower and the turbulence less intense. The results provide information on the most favorable conditions for achieving ignition in a complex multiburner geometry and could help the design and optimization of realistic gas turbine combustors.
    • Download: (4.141Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ignition Probability and Lean Ignition Behavior of a Swirled Premixed Bluff Body Stabilized Annular Combustor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277385
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorCiardiello, Roberto
    contributor authorPathania, Rohit S.
    contributor authorAllison, Patton M.
    contributor authorde Oliveira, Pedro M.
    contributor authorMastorakos, Epaminondas
    date accessioned2022-02-05T22:21:11Z
    date available2022-02-05T22:21:11Z
    date copyright3/10/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_04_041024.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277385
    description abstractAn experimental investigation was performed in a premixed annular combustor equipped with multiple swirl, bluff body burners to assess the ignition probability and to provide insights into the mechanisms of failure and of successful flame propagation. The experiments are done at conditions that are close to the lean blow-off (LBO) limit, and hence, the ignition is difficult and close to the limiting condition when ignition is not possible. Two configurations were employed, with 12 and 18 burners, the mixture velocity was varied between 10 and 30 m/s, and the equivalence ratio (ϕ) between 0.58 and 0.68. Ignition was initiated by a sequence of sparks (2 mm gap, 10 sparks of 10 ms each) and “ignition” is defined as successful ignition of the whole annular combustor. The mechanism of success and failure of the ignition process and the flame propagation patterns were investigated via high-speed imaging (10 kHz) of OH* chemiluminescence. The lean ignition limits were evaluated and compared to the LBO limits, finding the 12-burner configuration is more stable than the 18-burner. It was found that failure is linked to the trapping of the initial flame kernel inside the inner recirculation zone (IRZ) of a single burner adjacent to the spark, followed by localized quenching on the bluff body probably due to heat losses. In contrast, for a successful ignition, it was necessary for the flame kernel to propagate to the adjacent burner or for a flame pocket to be convected downstream in the chamber to grow and start propagating upward. Finally, the ignition probability (Pign) was obtained for different spark locations. It was found that sparking inside the recirculation zone resulted in Pign∼0 for most conditions, while Pign increased moving the spark away from the bluff body or placing it between two burners and peaked to Pign∼1 when the spark was located downstream in the combustion chamber, where the velocities are lower and the turbulence less intense. The results provide information on the most favorable conditions for achieving ignition in a complex multiburner geometry and could help the design and optimization of realistic gas turbine combustors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIgnition Probability and Lean Ignition Behavior of a Swirled Premixed Bluff Body Stabilized Annular Combustor
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048461
    journal fristpage041024-1
    journal lastpage041024-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian