YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 003::page 031002-1
    Author:
    Yang, Jing
    ,
    San Andrés, Luis
    ,
    Lu, Xueliang
    DOI: 10.1115/1.4048459
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: High-performance turbomachinery favors annular seals with a large damping coefficient to ensure rotor system stability. Pocket damper seals (PDSs), a variation of labyrinth seals with axial blades (ribs) and adding circumferential partition walls (ridges), produce a favorable damping performance. To further enhance the damping characteristic and reduce leakage, a novel stepped shaft PDS is hereby introduced. The invention has a unique arrangement of steps on the rotor surface, each facing an upstream rib in a pocket row. Thus, the step and a blade tip form a tight clearance (c1), while the rotor surface and the downstream blade tip make a larger clearance (c2). The convergence–divergence variation of cross-sectional areas along the flow direction increases the PDS damping coefficient. To validate the performance of the novel design, a stepped shaft PDS (c1/c2 = 0.5) with four axial ribs and eight circumferential pockets is built and tested. A comprehensive investigation, experimental and computational, produces the seal leakage and dynamic force coefficients for the stepped shaft PDS, as well as similar performance characteristics for an identical PDS with a smooth rotor surface (c1/c2 = 1, i.e., a uniform clearance PDS). The stepped shaft PDS operates with air at supply pressure (PS) ranging from 1.1 bar to 3.2 bar. The measured leakage for the stepped shaft PDS is 50% of that for the uniform clearance PDS. Computational fluid dynamics (CFD) and bulk flow model (BFM) predictions of leakage agree well with the test data. For PS = 2.3 bar, the test damping coefficient (C) for the stepped shaft PDS is ~1.5 times greater than the one for the uniform clearance PDS. With an increase in PS to 3.2 bar, the stepped shaft PDS shows a two and one half increase in damping coefficient. In comparison to the test data, a CFD model overestimates C by 29% for operation at PS = 3.2 bar, though capturing the variation trend versus whirl frequency. The BFM largely underpredicts C for the stepped shaft PDS and is abandoned for future work. Both the test data and CFD predictions demonstrate the superior damping performance of the stepped shaft PDS, thus providing a novel alternative seal configuration for turbomachinery usage.
    • Download: (4.042Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277334
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYang, Jing
    contributor authorSan Andrés, Luis
    contributor authorLu, Xueliang
    date accessioned2022-02-05T22:19:10Z
    date available2022-02-05T22:19:10Z
    date copyright2/8/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277334
    description abstractHigh-performance turbomachinery favors annular seals with a large damping coefficient to ensure rotor system stability. Pocket damper seals (PDSs), a variation of labyrinth seals with axial blades (ribs) and adding circumferential partition walls (ridges), produce a favorable damping performance. To further enhance the damping characteristic and reduce leakage, a novel stepped shaft PDS is hereby introduced. The invention has a unique arrangement of steps on the rotor surface, each facing an upstream rib in a pocket row. Thus, the step and a blade tip form a tight clearance (c1), while the rotor surface and the downstream blade tip make a larger clearance (c2). The convergence–divergence variation of cross-sectional areas along the flow direction increases the PDS damping coefficient. To validate the performance of the novel design, a stepped shaft PDS (c1/c2 = 0.5) with four axial ribs and eight circumferential pockets is built and tested. A comprehensive investigation, experimental and computational, produces the seal leakage and dynamic force coefficients for the stepped shaft PDS, as well as similar performance characteristics for an identical PDS with a smooth rotor surface (c1/c2 = 1, i.e., a uniform clearance PDS). The stepped shaft PDS operates with air at supply pressure (PS) ranging from 1.1 bar to 3.2 bar. The measured leakage for the stepped shaft PDS is 50% of that for the uniform clearance PDS. Computational fluid dynamics (CFD) and bulk flow model (BFM) predictions of leakage agree well with the test data. For PS = 2.3 bar, the test damping coefficient (C) for the stepped shaft PDS is ~1.5 times greater than the one for the uniform clearance PDS. With an increase in PS to 3.2 bar, the stepped shaft PDS shows a two and one half increase in damping coefficient. In comparison to the test data, a CFD model overestimates C by 29% for operation at PS = 3.2 bar, though capturing the variation trend versus whirl frequency. The BFM largely underpredicts C for the stepped shaft PDS and is abandoned for future work. Both the test data and CFD predictions demonstrate the superior damping performance of the stepped shaft PDS, thus providing a novel alternative seal configuration for turbomachinery usage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048459
    journal fristpage031002-1
    journal lastpage031002-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian