YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scavenge Performance of an Optimized Shallow Sump at Various Flow Conditions

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 002::page 021014-1
    Author:
    Chandra, Budi
    ,
    Johnson, Kathy
    DOI: 10.1115/1.4049405
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Oil scavenge flow in aero-engine bearing chamber remains largely a challenging problem for many engine designers. Research campaign on scavenge flow has been conducted by G2TRC—Gas Turbine and Transmissions Research Centre (previously Rolls Royce University Technology Centre in Gas Turbine Transmission Systems) at the University of Nottingham. It was recognized that a deep sump performs better than shallower one due to its ability to “shield” the collected oil in the sump from the shaft windage, thus reducing the amount of oil being picked up by the bulk air rotation. However, such a deep sump design cannot be employed in some engines and especially at certain locations where space is limited. A parametric study combined with phenomenological approach on shallow sump geometry has been conducted and presented in the previous publication, where a certain optimized shallow sump variant was proposed depending on whether the flow in the chamber is wall film dominated or airborne droplets dominated. The parametric phenomenological approach was employed since it can be done relatively quicker than typical data gathering through an experiment. However, the approach relies on qualitative interpretation of the flow features, and its application in bearing chamber flow research has never been validated before. This paper presents the results of quantitative measurements of residence volumes of an optimized shallow sump variant identified in the parametric phenomenological study. Comparison was then made with the residence volumes of some existing engine sumps. It was found that the optimized shallow sump for wall film dominated flow has lower residence volumes compared to some existing engine sumps. In some cases, the residence volume can be reduced by up to 75%. An optimized shallow sump variant for airborne droplets dominated was also identified in the previous parametric phenomenological study, although the residence volume measurement is yet to be conducted. The optimized shallow sump for wall film dominated flow was also identified as a good sump regardless of the flow regime. However, when it was tested in airborne droplets dominated flow, its residence volumes are higher than some of the existing engine sumps. This highlights the importance of considering the flow regime in the bearing chamber in any attempt to optimize a sump geometry.
    • Download: (3.058Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scavenge Performance of an Optimized Shallow Sump at Various Flow Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277324
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorChandra, Budi
    contributor authorJohnson, Kathy
    date accessioned2022-02-05T22:18:49Z
    date available2022-02-05T22:18:49Z
    date copyright1/18/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_02_021014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277324
    description abstractOil scavenge flow in aero-engine bearing chamber remains largely a challenging problem for many engine designers. Research campaign on scavenge flow has been conducted by G2TRC—Gas Turbine and Transmissions Research Centre (previously Rolls Royce University Technology Centre in Gas Turbine Transmission Systems) at the University of Nottingham. It was recognized that a deep sump performs better than shallower one due to its ability to “shield” the collected oil in the sump from the shaft windage, thus reducing the amount of oil being picked up by the bulk air rotation. However, such a deep sump design cannot be employed in some engines and especially at certain locations where space is limited. A parametric study combined with phenomenological approach on shallow sump geometry has been conducted and presented in the previous publication, where a certain optimized shallow sump variant was proposed depending on whether the flow in the chamber is wall film dominated or airborne droplets dominated. The parametric phenomenological approach was employed since it can be done relatively quicker than typical data gathering through an experiment. However, the approach relies on qualitative interpretation of the flow features, and its application in bearing chamber flow research has never been validated before. This paper presents the results of quantitative measurements of residence volumes of an optimized shallow sump variant identified in the parametric phenomenological study. Comparison was then made with the residence volumes of some existing engine sumps. It was found that the optimized shallow sump for wall film dominated flow has lower residence volumes compared to some existing engine sumps. In some cases, the residence volume can be reduced by up to 75%. An optimized shallow sump variant for airborne droplets dominated was also identified in the previous parametric phenomenological study, although the residence volume measurement is yet to be conducted. The optimized shallow sump for wall film dominated flow was also identified as a good sump regardless of the flow regime. However, when it was tested in airborne droplets dominated flow, its residence volumes are higher than some of the existing engine sumps. This highlights the importance of considering the flow regime in the bearing chamber in any attempt to optimize a sump geometry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleScavenge Performance of an Optimized Shallow Sump at Various Flow Conditions
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4049405
    journal fristpage021014-1
    journal lastpage021014-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian