YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 002::page 021002-1
    Author:
    Kaiser, Sascha
    ,
    Schmitz, Oliver
    ,
    Klingels, Hermann
    DOI: 10.1115/1.4048993
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recognizing the attention currently devoted to the environmental impact of aviation, this three-part publication series introduces two new aircraft propulsion concepts for the timeframe beyond 2030. This second part presents the free-piston composite cycle engine concept. It is composed of a gas turbine topped with a free-piston system. The latter is a self-powered gas generator in which the internal combustion process drives an integrated air compressor. Here, several free-piston engines replace the high-pressure core of the gas turbine. Through the ability to work at much higher temperatures and pressures, the overall system efficiency can be increased significantly, and fuel burn as well as CO2 emissions reduce. The proposed free-piston composite cycle engine design is described in detail, and the sources of thermodynamic benefits are stated. Concrete engineering solutions consider the implementation into an aircraft. The free-piston design enables lower weight and size compared to a crankshaft-bound piston engine, as no mechanical transmission and lubrication system is required. The absence of a crankshaft and connecting rods eliminates reactive forces, reduces mechanical losses, and allows higher mean piston velocities. Facilitated through air lubrication, higher cylinder temperatures are viable. The reduction of heat losses enables cooling of the piston-cylinder with core fluid. The use of a sequential combustion chamber can enhance operability and tailor the production of NOx in low-altitude operation. A discussion of emissions affecting the environment shows the potential to reduce the climate impact of aviation.
    • Download: (763.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277311
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKaiser, Sascha
    contributor authorSchmitz, Oliver
    contributor authorKlingels, Hermann
    date accessioned2022-02-05T22:18:22Z
    date available2022-02-05T22:18:22Z
    date copyright1/13/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_02_021002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277311
    description abstractRecognizing the attention currently devoted to the environmental impact of aviation, this three-part publication series introduces two new aircraft propulsion concepts for the timeframe beyond 2030. This second part presents the free-piston composite cycle engine concept. It is composed of a gas turbine topped with a free-piston system. The latter is a self-powered gas generator in which the internal combustion process drives an integrated air compressor. Here, several free-piston engines replace the high-pressure core of the gas turbine. Through the ability to work at much higher temperatures and pressures, the overall system efficiency can be increased significantly, and fuel burn as well as CO2 emissions reduce. The proposed free-piston composite cycle engine design is described in detail, and the sources of thermodynamic benefits are stated. Concrete engineering solutions consider the implementation into an aircraft. The free-piston design enables lower weight and size compared to a crankshaft-bound piston engine, as no mechanical transmission and lubrication system is required. The absence of a crankshaft and connecting rods eliminates reactive forces, reduces mechanical losses, and allows higher mean piston velocities. Facilitated through air lubrication, higher cylinder temperatures are viable. The reduction of heat losses enables cooling of the piston-cylinder with core fluid. The use of a sequential combustion chamber can enhance operability and tailor the production of NOx in low-altitude operation. A discussion of emissions affecting the environment shows the potential to reduce the climate impact of aviation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAero Engine Concepts Beyond 2030: Part 2—The Free-Piston Composite Cycle Engine
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048993
    journal fristpage021002-1
    journal lastpage021002-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian