Novel Approach for Optical Characterization of Thrust Collar Lubricated Area: Experimental and Numerical ResultsSource: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 001::page 011011-1DOI: 10.1115/1.4049013Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Thrust collars (TCs) are bearing elements used in geared machinery that transmit axial loads from one shaft to another. TCs are primarily used in integrally geared compressors (IGCs) but are also found in gearboxes and marine propulsion applications. TCs are hydrodynamic elements featuring a converging-diverging wedge to generate a pressure field that reacts axial loads. Accurate modeling requires knowledge of the film characteristics such as cavitation, turbulence, and air ingestion, all of which reduce load capacity. Current models in the literature do not include mass-conserving cavitation algorithms or turbulence flow. The following paper introduces a new test rig that optically characterizes the thin film region of a TC. The test rig geometries, speeds, and loads match those typically seen in IGC applications. The test rig utilizes a transparent acrylic window in conjunction with a high-speed camera (HSC) to obtain high-speed images of the oil film. Images are filtered and averaged to obtain areas of interest in the oil film. Cavitation and turbulence areas are measured for pinion speeds of 2.5, 5, and 7.5 krpm and axial loads of 0.5, 1, and 1.5 kN. Cavitation occurs in the diverging (upper) region of the TC and appears at pinion speeds over 5000 rpm but does not change in shape after that speed. The cavitation is independent of applied load. Turbulence at the inlet region (bottom) occurs at all speeds but increases to almost 35% of the total area at the highest speed. This paper also presents a finite element (FE) model that includes predictions for the static characteristics of the TC, specifically the cavitation area. The cavitation modeling uses an iterative Elord's method, which conserves mass. The model predicts a similar cavitation area for all speeds and loads. A computational fluid dynamics (CFD) study predicts a similar cavitation area and pressure field to the FE model. The CFD model predicts turbulence in the lower region that increases for increasing spin speed, which matches the experimental results. The CFD model tends to under-predict the turbulence area compared to the experiments. As IGCs move into new application areas to satisfy new needs, the increase in efficiency and capacity comes at a cost of more load and higher speed requirements on the TCs. This work will help original equipment manufacturers model TCs more accurately to ensure safe and efficient operation.
|
Show full item record
contributor author | Kerr, Thomas | |
contributor author | Delgado, Adolfo | |
date accessioned | 2022-02-05T22:17:57Z | |
date available | 2022-02-05T22:17:57Z | |
date copyright | 1/4/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0742-4795 | |
identifier other | gtp_143_01_011011.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4277301 | |
description abstract | Thrust collars (TCs) are bearing elements used in geared machinery that transmit axial loads from one shaft to another. TCs are primarily used in integrally geared compressors (IGCs) but are also found in gearboxes and marine propulsion applications. TCs are hydrodynamic elements featuring a converging-diverging wedge to generate a pressure field that reacts axial loads. Accurate modeling requires knowledge of the film characteristics such as cavitation, turbulence, and air ingestion, all of which reduce load capacity. Current models in the literature do not include mass-conserving cavitation algorithms or turbulence flow. The following paper introduces a new test rig that optically characterizes the thin film region of a TC. The test rig geometries, speeds, and loads match those typically seen in IGC applications. The test rig utilizes a transparent acrylic window in conjunction with a high-speed camera (HSC) to obtain high-speed images of the oil film. Images are filtered and averaged to obtain areas of interest in the oil film. Cavitation and turbulence areas are measured for pinion speeds of 2.5, 5, and 7.5 krpm and axial loads of 0.5, 1, and 1.5 kN. Cavitation occurs in the diverging (upper) region of the TC and appears at pinion speeds over 5000 rpm but does not change in shape after that speed. The cavitation is independent of applied load. Turbulence at the inlet region (bottom) occurs at all speeds but increases to almost 35% of the total area at the highest speed. This paper also presents a finite element (FE) model that includes predictions for the static characteristics of the TC, specifically the cavitation area. The cavitation modeling uses an iterative Elord's method, which conserves mass. The model predicts a similar cavitation area for all speeds and loads. A computational fluid dynamics (CFD) study predicts a similar cavitation area and pressure field to the FE model. The CFD model predicts turbulence in the lower region that increases for increasing spin speed, which matches the experimental results. The CFD model tends to under-predict the turbulence area compared to the experiments. As IGCs move into new application areas to satisfy new needs, the increase in efficiency and capacity comes at a cost of more load and higher speed requirements on the TCs. This work will help original equipment manufacturers model TCs more accurately to ensure safe and efficient operation. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Novel Approach for Optical Characterization of Thrust Collar Lubricated Area: Experimental and Numerical Results | |
type | Journal Paper | |
journal volume | 143 | |
journal issue | 1 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4049013 | |
journal fristpage | 011011-1 | |
journal lastpage | 011011-10 | |
page | 10 | |
tree | Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 001 | |
contenttype | Fulltext |