YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adjoint-Based Calculation of Parametric Thermoacoustic Maps of an Industrial Combustion Chamber

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 143 ):;issue: 001::page 011003-1
    Author:
    Silva, Camilo F.
    ,
    Prieto, Laura
    ,
    Ancharek, Maximiliano
    ,
    Marigliani, Pablo
    ,
    Mensah, Georg A.
    DOI: 10.1115/1.4049295
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The aim of this study is to efficiently calculate parametric thermoacoustic maps of typical combustion chambers. Two configurations are considered: an academic configuration based on a Rijke tube, and an industrial combustion chamber, which is the core of a recently developed microturbine for power generation. Such maps can be understood as the collection of loci of thermoacoustic eigenfrequencies obtained under systematic variations of some defined parameters, while considering the Helmholtz equation as the thermoacoustic model of interest. In this study we consider variations on two parameters: the gain n and time-delay τ associated with a generic flame response model. We also show the feasibility of the proposed approach when considering more realistic flame responses. A straight-forward way to calculate such a thermoacoustic map is by solving the Helmholtz equation, and, thus, the corresponding nonlinear eigenvalue problem (NLEVP), one time per parameter combination. With that approach, the nonlinear eigenvalue problem needs to be solved hundreds or thousands of times if an adequate resolution of the thermoacoustic map is sought. Such a strategy may be computationally unaffordable. In order to overcome this difficulty, this work utilizes an adjoint-based, high-order perturbation method. The actual eigenvalue problem is only solved once at a baseline point. After applying the perturbation equations at that point, a polynomial rational function—the Padé approximant—is obtained to estimate the eigenfrequency drift that results for a small or large perturbation in the flame response. It is demonstrated, for both academic and industrial test cases, that the obtained maps are accurate. Additionally, it is shown that these maps reveal a large variety of thermoacoustic features, such as stability boundaries, intrinsic thermoacoustic modes, and exceptional points. The numerical costs for such calculations are negligible even for the industrial combustion chamber investigated.
    • Download: (1.853Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adjoint-Based Calculation of Parametric Thermoacoustic Maps of an Industrial Combustion Chamber

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277293
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSilva, Camilo F.
    contributor authorPrieto, Laura
    contributor authorAncharek, Maximiliano
    contributor authorMarigliani, Pablo
    contributor authorMensah, Georg A.
    date accessioned2022-02-05T22:17:44Z
    date available2022-02-05T22:17:44Z
    date copyright12/23/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_143_01_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277293
    description abstractThe aim of this study is to efficiently calculate parametric thermoacoustic maps of typical combustion chambers. Two configurations are considered: an academic configuration based on a Rijke tube, and an industrial combustion chamber, which is the core of a recently developed microturbine for power generation. Such maps can be understood as the collection of loci of thermoacoustic eigenfrequencies obtained under systematic variations of some defined parameters, while considering the Helmholtz equation as the thermoacoustic model of interest. In this study we consider variations on two parameters: the gain n and time-delay τ associated with a generic flame response model. We also show the feasibility of the proposed approach when considering more realistic flame responses. A straight-forward way to calculate such a thermoacoustic map is by solving the Helmholtz equation, and, thus, the corresponding nonlinear eigenvalue problem (NLEVP), one time per parameter combination. With that approach, the nonlinear eigenvalue problem needs to be solved hundreds or thousands of times if an adequate resolution of the thermoacoustic map is sought. Such a strategy may be computationally unaffordable. In order to overcome this difficulty, this work utilizes an adjoint-based, high-order perturbation method. The actual eigenvalue problem is only solved once at a baseline point. After applying the perturbation equations at that point, a polynomial rational function—the Padé approximant—is obtained to estimate the eigenfrequency drift that results for a small or large perturbation in the flame response. It is demonstrated, for both academic and industrial test cases, that the obtained maps are accurate. Additionally, it is shown that these maps reveal a large variety of thermoacoustic features, such as stability boundaries, intrinsic thermoacoustic modes, and exceptional points. The numerical costs for such calculations are negligible even for the industrial combustion chamber investigated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdjoint-Based Calculation of Parametric Thermoacoustic Maps of an Industrial Combustion Chamber
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4049295
    journal fristpage011003-1
    journal lastpage011003-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian