YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Friction-Enhanced Tuned Ring Damper for Bladed Disks

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 143 ):;issue: 001::page 011002-1
    Author:
    Lupini, Andrea
    ,
    Epureanu, Bogdan I.
    DOI: 10.1115/1.4049203
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper introduces a new type of damper for turbomachinery blisks. The major pitfalls of the damper concepts currently employed are two: the low level of relative motion that is available at the damper attachment location, and the inability to control the preload at the frictional interface. To address these issues, the proposed damper is designed as a tuned vibration absorber (TVA), which allows energy transfer from the blades to the damper provided that the natural frequency of the damper is close to that of the host structure. Thanks to the enhanced energy transfer, the damper can experience increased relative motion. Frictional contacts are then included to dissipate the energy transferred to the damper. The damper structure must be stiff enough to withstand centrifugal loading without affecting the preload too much. However, it also must be compliant to make sure that its natural frequencies can match the ones of the host structure. For this reason, the proposed damper involves a complex geometry that is stiff in the radial direction and softer in the circumferential direction, which is the direction of the relative motion. A model of the damper is created to damp the vibration of a realistic blisk. The effectiveness of the damper is investigated using high fidelity finite element (FE) models. The frequency response of the system is obtained to analyze the effectiveness of the proposed design. Preliminary results show the potential of this technology for structures with such low damping.
    • Download: (2.718Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Friction-Enhanced Tuned Ring Damper for Bladed Disks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277291
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLupini, Andrea
    contributor authorEpureanu, Bogdan I.
    date accessioned2022-02-05T22:17:41Z
    date available2022-02-05T22:17:41Z
    date copyright12/23/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_143_01_011002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277291
    description abstractThis paper introduces a new type of damper for turbomachinery blisks. The major pitfalls of the damper concepts currently employed are two: the low level of relative motion that is available at the damper attachment location, and the inability to control the preload at the frictional interface. To address these issues, the proposed damper is designed as a tuned vibration absorber (TVA), which allows energy transfer from the blades to the damper provided that the natural frequency of the damper is close to that of the host structure. Thanks to the enhanced energy transfer, the damper can experience increased relative motion. Frictional contacts are then included to dissipate the energy transferred to the damper. The damper structure must be stiff enough to withstand centrifugal loading without affecting the preload too much. However, it also must be compliant to make sure that its natural frequencies can match the ones of the host structure. For this reason, the proposed damper involves a complex geometry that is stiff in the radial direction and softer in the circumferential direction, which is the direction of the relative motion. A model of the damper is created to damp the vibration of a realistic blisk. The effectiveness of the damper is investigated using high fidelity finite element (FE) models. The frequency response of the system is obtained to analyze the effectiveness of the proposed design. Preliminary results show the potential of this technology for structures with such low damping.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Friction-Enhanced Tuned Ring Damper for Bladed Disks
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4049203
    journal fristpage011002-1
    journal lastpage011002-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian