YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Assessment of the Drag Models in the Case of a Shock Interacting With a Fixed Bed of Point Particles

    Source: Journal of Fluids Engineering:;2020:;volume( 143 ):;issue: 001::page 011401-1
    Author:
    Koneru, Rahul Babu
    ,
    Balachandar, S.
    DOI: 10.1115/1.4048130
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, three-dimensional Euler–Lagrange (EL) point-particle simulations of a shock wave interacting with a fixed bed of particles are carried out. The results from the particle-resolved (PR) simulations are used to assess the performance of the point-particle drag models during short time scales. We demonstrate that in a one-way coupled regime, the point-particle simulations recover the dominant gas dynamic features of the flow and are in a good agreement with the exact Riemann solution of a shock traveling through a sudden area contraction. Although the PR simulations are inviscid, we show that a dissipative drag is necessary to predict the mean behavior of the gas. As a model for the inviscid shock-induced (SI) drag two different models are presented in lieu of the quasi-steady drag. Finally, two-way coupled simulations are performed at four different particle volume fractions {0.10, 0.15, 0.20, 0.25} and three different incident shock Mach numbers {1.22, 1.66, 3.0} and compared against the data from PR inviscid simulations. At a lower Mach number (1.22), averaged flow quantities from the two-way coupled simulations agree well with the PR simulations. As the Mach number increases, we observe that the discrepancies between the point-particle and the PR simulations grow. A sensitivity analysis of the drag models involved reveals a strong influence of the inviscid-unsteady force on the gas quantities especially in the case of a strong shock interacting with a dense bed of particles. The use of Mach correlation beyond the subcritical regime coupled with the model for volume fraction correction is identified as a probable cause for the additional drag.
    • Download: (4.838Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Assessment of the Drag Models in the Case of a Shock Interacting With a Fixed Bed of Point Particles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277176
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorKoneru, Rahul Babu
    contributor authorBalachandar, S.
    date accessioned2022-02-05T22:14:02Z
    date available2022-02-05T22:14:02Z
    date copyright10/5/2020 12:00:00 AM
    date issued2020
    identifier issn0098-2202
    identifier otherfe_143_01_011401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277176
    description abstractIn this work, three-dimensional Euler–Lagrange (EL) point-particle simulations of a shock wave interacting with a fixed bed of particles are carried out. The results from the particle-resolved (PR) simulations are used to assess the performance of the point-particle drag models during short time scales. We demonstrate that in a one-way coupled regime, the point-particle simulations recover the dominant gas dynamic features of the flow and are in a good agreement with the exact Riemann solution of a shock traveling through a sudden area contraction. Although the PR simulations are inviscid, we show that a dissipative drag is necessary to predict the mean behavior of the gas. As a model for the inviscid shock-induced (SI) drag two different models are presented in lieu of the quasi-steady drag. Finally, two-way coupled simulations are performed at four different particle volume fractions {0.10, 0.15, 0.20, 0.25} and three different incident shock Mach numbers {1.22, 1.66, 3.0} and compared against the data from PR inviscid simulations. At a lower Mach number (1.22), averaged flow quantities from the two-way coupled simulations agree well with the PR simulations. As the Mach number increases, we observe that the discrepancies between the point-particle and the PR simulations grow. A sensitivity analysis of the drag models involved reveals a strong influence of the inviscid-unsteady force on the gas quantities especially in the case of a strong shock interacting with a dense bed of particles. The use of Mach correlation beyond the subcritical regime coupled with the model for volume fraction correction is identified as a probable cause for the additional drag.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Assessment of the Drag Models in the Case of a Shock Interacting With a Fixed Bed of Point Particles
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4048130
    journal fristpage011401-1
    journal lastpage011401-16
    page16
    treeJournal of Fluids Engineering:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian