YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fast Data-Driven Model Predictive Control Strategy for Connected and Automated Vehicles

    Source: ASME Letters in Dynamic Systems and Control:;2021:;volume( 001 ):;issue: 004::page 041011-1
    Author:
    Bhattacharyya, Viranjan
    ,
    Canosa, Alejandro Fernandez
    ,
    HomChaudhuri, Baisravan
    DOI: 10.1115/1.4050501
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We present a fast data-driven model predictive control (MPC) strategy for connected and automated vehicles, which can ensure collision avoidance in the presence of uncertainty in shared/predicted trajectory of preceding vehicles. The proposed control strategy focuses on improvement in fuel economy and computational efficiency. We exploit a data-driven modeling approach to identify a linear predictor for the nonlinear system and evaluate a deterministic equivalent of the probabilistic collision avoidance constraint to formulate the equivalent convex optimal control problem. We then develop a hierarchical control framework with sampling-based high-level control and fast MPC-based low-level control. Simulation results show the efficacy of the proposed approach both in terms of computation time and fuel efficiency.
    • Download: (477.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fast Data-Driven Model Predictive Control Strategy for Connected and Automated Vehicles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277170
    Collections
    • ASME Letters in Dynamic Systems and Control

    Show full item record

    contributor authorBhattacharyya, Viranjan
    contributor authorCanosa, Alejandro Fernandez
    contributor authorHomChaudhuri, Baisravan
    date accessioned2022-02-05T22:13:55Z
    date available2022-02-05T22:13:55Z
    date copyright4/2/2021 12:00:00 AM
    date issued2021
    identifier issn2689-6117
    identifier otheraldsc_1_4_041011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277170
    description abstractWe present a fast data-driven model predictive control (MPC) strategy for connected and automated vehicles, which can ensure collision avoidance in the presence of uncertainty in shared/predicted trajectory of preceding vehicles. The proposed control strategy focuses on improvement in fuel economy and computational efficiency. We exploit a data-driven modeling approach to identify a linear predictor for the nonlinear system and evaluate a deterministic equivalent of the probabilistic collision avoidance constraint to formulate the equivalent convex optimal control problem. We then develop a hierarchical control framework with sampling-based high-level control and fast MPC-based low-level control. Simulation results show the efficacy of the proposed approach both in terms of computation time and fuel efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFast Data-Driven Model Predictive Control Strategy for Connected and Automated Vehicles
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleASME Letters in Dynamic Systems and Control
    identifier doi10.1115/1.4050501
    journal fristpage041011-1
    journal lastpage041011-5
    page5
    treeASME Letters in Dynamic Systems and Control:;2021:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian