YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 005::page 051011-1
    Author:
    Sterzinger, P. Z.
    ,
    Merli, F.
    ,
    Peters, A.
    ,
    Behre, S.
    ,
    Heitmeir, F.
    ,
    Göttlich, E.
    DOI: 10.1115/1.4050145
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Previous studies have indicated a potential for improving the performance of a turbine center frame (TCF) duct by optimizing the clocking position between the high-pressure turbine (HPT) vanes and TCF struts. To assess the impact of clocking on the performance, a new test vehicle with a clockable ratio of HPT vanes to TCF struts, consisting of an HPT stage (aerodynamically representative of the second-stage HPT engine), a TCF duct with nonturning struts, and a first-stage low-pressure turbine vane, was designed and tested in the transonic test turbine facility (TTTF) at Graz University of Technology. This article quantifies the performance impact of clocking and describes the mechanisms causing TCF flow field changes, leveraging both experimental and numerical data. Other areas in the TCF duct impacted by the choice of the HPT vane circumferential position including the strength of unsteady HPT-TCF interaction modes, TCF strut incidence changes, and carryover effects to the first low-pressure turbine (LPT) vane are additionally highlighted. Five-hole-probe (5HP) area traverses and kielhead-rake traverses were used to assess the flow field at the TCF exit and to calculate the pressure loss. The flow field at the TCF exit shows significant differences depending on the circumferential position of the HPT vane. A relative performance benefit of 5% was achieved. A series of unsteady RANS simulations were performed to support the measured results, understand, and characterize the relevant loss mechanisms. The observed performance improvement was related to interaction between the HPT secondary-flow structures and the TCF struts. The impact of the HPT vane clocking on the unsteady flow field downstream of the TCF was investigated using fast-response aerodynamic pressure probe (FRAPP) area traverses and analyzed by means of modal decomposition. In this way, the individual azimuthal modes were ranked by their amplitude, and a dependency of the clocking position was observed and quantified.
    • Download: (1.881Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276992
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSterzinger, P. Z.
    contributor authorMerli, F.
    contributor authorPeters, A.
    contributor authorBehre, S.
    contributor authorHeitmeir, F.
    contributor authorGöttlich, E.
    date accessioned2022-02-05T22:08:23Z
    date available2022-02-05T22:08:23Z
    date copyright4/13/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_5_051011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276992
    description abstractPrevious studies have indicated a potential for improving the performance of a turbine center frame (TCF) duct by optimizing the clocking position between the high-pressure turbine (HPT) vanes and TCF struts. To assess the impact of clocking on the performance, a new test vehicle with a clockable ratio of HPT vanes to TCF struts, consisting of an HPT stage (aerodynamically representative of the second-stage HPT engine), a TCF duct with nonturning struts, and a first-stage low-pressure turbine vane, was designed and tested in the transonic test turbine facility (TTTF) at Graz University of Technology. This article quantifies the performance impact of clocking and describes the mechanisms causing TCF flow field changes, leveraging both experimental and numerical data. Other areas in the TCF duct impacted by the choice of the HPT vane circumferential position including the strength of unsteady HPT-TCF interaction modes, TCF strut incidence changes, and carryover effects to the first low-pressure turbine (LPT) vane are additionally highlighted. Five-hole-probe (5HP) area traverses and kielhead-rake traverses were used to assess the flow field at the TCF exit and to calculate the pressure loss. The flow field at the TCF exit shows significant differences depending on the circumferential position of the HPT vane. A relative performance benefit of 5% was achieved. A series of unsteady RANS simulations were performed to support the measured results, understand, and characterize the relevant loss mechanisms. The observed performance improvement was related to interaction between the HPT secondary-flow structures and the TCF struts. The impact of the HPT vane clocking on the unsteady flow field downstream of the TCF was investigated using fast-response aerodynamic pressure probe (FRAPP) area traverses and analyzed by means of modal decomposition. In this way, the individual azimuthal modes were ranked by their amplitude, and a dependency of the clocking position was observed and quantified.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050145
    journal fristpage051011-1
    journal lastpage051011-13
    page13
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian