YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Short-Term Forecasting and Uncertainty Analysis of Wind Power

    Source: Journal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 005::page 054503-1
    Author:
    Bo, Gu
    ,
    Keke, Luo
    ,
    Hongtao, Zhang
    ,
    Jinhua, Zhang
    ,
    Hui, Huang
    DOI: 10.1115/1.4050594
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate forecasting is the key factor in promoting wind power consumption and improving the stable operation of power systems. A short-term wind power forecasting (WPF) and uncertainty analysis method based on whale optimization algorithm (WOA), least squares support vector machine (LSSVM), and nonparametric kernel density estimation (NPKDE) was proposed in this paper. The advantages of WOA (fast convergence speed and high convergence accuracy) were used to optimize the penalty factor and kernel function width of the LSSVM model, and the calculation speed and forecasting accuracy of the LSSVM model were improved. The training sample set is classified according to the wind speed interval, and the WOA-LSSVM forecasting model is trained by subclass after classification to further improve the accuracy of short-term WPF. The NPKDE method is used to accurately calculate the probability density distribution characteristics of the forecasting error of wind power, and the confidence interval of the WPF is accurately calculated based on the probability density distribution characteristics. The calculation results show that the forecasting accuracy of the WOA-LSSVM model is higher than those of the LSSVM, long short-term memory (LSTM), and particle swarm optimization and least squares support vector machine (PSO-LSSVM) models, and the forecasting accuracy of the WOA-LSSVM model can be further improved after classifying the training sample set. The coverage of the confidence intervals in different time scales is higher than the corresponding confidence level, indicating that the NPKDE method can accurately describe the probability density distribution characteristics of the WPF errors.
    • Download: (878.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Short-Term Forecasting and Uncertainty Analysis of Wind Power

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276763
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorBo, Gu
    contributor authorKeke, Luo
    contributor authorHongtao, Zhang
    contributor authorJinhua, Zhang
    contributor authorHui, Huang
    date accessioned2022-02-05T22:01:31Z
    date available2022-02-05T22:01:31Z
    date copyright4/9/2021 12:00:00 AM
    date issued2021
    identifier issn0199-6231
    identifier othersol_143_5_054503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276763
    description abstractAccurate forecasting is the key factor in promoting wind power consumption and improving the stable operation of power systems. A short-term wind power forecasting (WPF) and uncertainty analysis method based on whale optimization algorithm (WOA), least squares support vector machine (LSSVM), and nonparametric kernel density estimation (NPKDE) was proposed in this paper. The advantages of WOA (fast convergence speed and high convergence accuracy) were used to optimize the penalty factor and kernel function width of the LSSVM model, and the calculation speed and forecasting accuracy of the LSSVM model were improved. The training sample set is classified according to the wind speed interval, and the WOA-LSSVM forecasting model is trained by subclass after classification to further improve the accuracy of short-term WPF. The NPKDE method is used to accurately calculate the probability density distribution characteristics of the forecasting error of wind power, and the confidence interval of the WPF is accurately calculated based on the probability density distribution characteristics. The calculation results show that the forecasting accuracy of the WOA-LSSVM model is higher than those of the LSSVM, long short-term memory (LSTM), and particle swarm optimization and least squares support vector machine (PSO-LSSVM) models, and the forecasting accuracy of the WOA-LSSVM model can be further improved after classifying the training sample set. The coverage of the confidence intervals in different time scales is higher than the corresponding confidence level, indicating that the NPKDE method can accurately describe the probability density distribution characteristics of the WPF errors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleShort-Term Forecasting and Uncertainty Analysis of Wind Power
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4050594
    journal fristpage054503-1
    journal lastpage054503-7
    page7
    treeJournal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian