High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor DepositionSource: Journal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 004::page 041006-1DOI: 10.1115/1.4049326Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: For the first time, we used a hybrid physical–chemical vapor deposition (HPCVD) method to fabricate perovskite solar cells (PSCs) based on perovskite films with both organic cations and halogen anions. A high power conversion efficiency (PCE) of 18.1% was achieved based on a mixed perovskite film of MAxFA1−xPb (IyBr1−y)3 and the efficiency of the PSCs with MAPbI3 and MAxFA1−xPbI3 films were 14.5% and 16.4%, respectively. Perovskite material components and bandgaps were precisely tuned to achieve high photoelectric conversion performance. Three different types of perovskite films employed include MAPbI3, MAxFA1−xPbI3, and MAxFA1−xPb (IyBr1−y)3 (which are also designated as MAPbI3, MA0.89FA0.11PbI3, and MA0.54FA0.46Pb (I0.94Br0.06)3 with the respective bandgaps of 1.60 eV, 1.58 eV, and 1.61 eV. The experimental results demonstrate the ability to fabricate both organic cation and halogen anion mixed perovskite films by the HPCVD method and achieve easily adjustable bandgaps. In addition, the perovskite films fabricated by HPCVD have superior surface morphology, large crystal size, and low surface roughness. Eventually, this vapor-based method will have great potential in the fabrication of large-area and flexible PSCs to promote commercial application and industrialization of future PSCs.
|
Collections
Show full item record
contributor author | Wei, Xiangyang | |
contributor author | Peng, Yanke | |
contributor author | Jing, Gaoshan | |
contributor author | Simon, Terrence | |
contributor author | Cui, Tianhong | |
date accessioned | 2022-02-05T22:00:56Z | |
date available | 2022-02-05T22:00:56Z | |
date copyright | 1/12/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0199-6231 | |
identifier other | sol_143_4_041006.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4276747 | |
description abstract | For the first time, we used a hybrid physical–chemical vapor deposition (HPCVD) method to fabricate perovskite solar cells (PSCs) based on perovskite films with both organic cations and halogen anions. A high power conversion efficiency (PCE) of 18.1% was achieved based on a mixed perovskite film of MAxFA1−xPb (IyBr1−y)3 and the efficiency of the PSCs with MAPbI3 and MAxFA1−xPbI3 films were 14.5% and 16.4%, respectively. Perovskite material components and bandgaps were precisely tuned to achieve high photoelectric conversion performance. Three different types of perovskite films employed include MAPbI3, MAxFA1−xPbI3, and MAxFA1−xPb (IyBr1−y)3 (which are also designated as MAPbI3, MA0.89FA0.11PbI3, and MA0.54FA0.46Pb (I0.94Br0.06)3 with the respective bandgaps of 1.60 eV, 1.58 eV, and 1.61 eV. The experimental results demonstrate the ability to fabricate both organic cation and halogen anion mixed perovskite films by the HPCVD method and achieve easily adjustable bandgaps. In addition, the perovskite films fabricated by HPCVD have superior surface morphology, large crystal size, and low surface roughness. Eventually, this vapor-based method will have great potential in the fabrication of large-area and flexible PSCs to promote commercial application and industrialization of future PSCs. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor Deposition | |
type | Journal Paper | |
journal volume | 143 | |
journal issue | 4 | |
journal title | Journal of Solar Energy Engineering | |
identifier doi | 10.1115/1.4049326 | |
journal fristpage | 041006-1 | |
journal lastpage | 041006-8 | |
page | 8 | |
tree | Journal of Solar Energy Engineering:;2021:;volume( 143 ):;issue: 004 | |
contenttype | Fulltext |