YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition

    Source: Journal of Mechanical Design:;2020:;volume( 143 ):;issue: 005::page 051401-1
    Author:
    Bayrak, Alparslan Emrah
    ,
    Sha, Zhenghui
    DOI: 10.1115/1.4048222
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Design can be viewed as a sequential and iterative search process. Fundamental understanding and computational modeling of human sequential design decisions are essential for developing new methods in design automation and human–AI collaboration. This paper presents an approach for predicting designers’ future search behaviors in a sequential design process under an unknown objective function by combining sequence learning with game theory. While the majority of existing studies focus on analyzing sequential design decisions from the descriptive and prescriptive point of view, this study is motivated to develop a predictive framework. We use data containing designers’ actual sequential search decisions under competition collected from a black-box function optimization game developed previously. We integrate the long short-term memory networks with the Delta method to predict the next sampling point with a distribution, and combine this model with a non-cooperative game to predict whether a designer will stop searching the design space or not based on their belief of the opponent’s best design. In the function optimization game, the proposed model accurately predicts 82% of the next design variable values and 92% of the next function values in the test data with an upper and lower bound, suggesting that a long short-term memory network can effectively predict the next design decisions based on their past decisions. Further, the game-theoretic model predicts that 60.8% of the participants stop searching for designs sooner than they actually do while accurately predicting when the remaining 39.2% of the participants stop. These results suggest that a majority of the designers show a strong tendency to overestimate their opponents’ performance, leading them to spend more on searching for better designs than they would have, had they known their opponents’ actual performance.
    • Download: (643.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276311
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorBayrak, Alparslan Emrah
    contributor authorSha, Zhenghui
    date accessioned2022-02-05T21:46:23Z
    date available2022-02-05T21:46:23Z
    date copyright10/28/2020 12:00:00 AM
    date issued2020
    identifier issn1050-0472
    identifier othermd_143_5_051401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276311
    description abstractDesign can be viewed as a sequential and iterative search process. Fundamental understanding and computational modeling of human sequential design decisions are essential for developing new methods in design automation and human–AI collaboration. This paper presents an approach for predicting designers’ future search behaviors in a sequential design process under an unknown objective function by combining sequence learning with game theory. While the majority of existing studies focus on analyzing sequential design decisions from the descriptive and prescriptive point of view, this study is motivated to develop a predictive framework. We use data containing designers’ actual sequential search decisions under competition collected from a black-box function optimization game developed previously. We integrate the long short-term memory networks with the Delta method to predict the next sampling point with a distribution, and combine this model with a non-cooperative game to predict whether a designer will stop searching the design space or not based on their belief of the opponent’s best design. In the function optimization game, the proposed model accurately predicts 82% of the next design variable values and 92% of the next function values in the test data with an upper and lower bound, suggesting that a long short-term memory network can effectively predict the next design decisions based on their past decisions. Further, the game-theoretic model predicts that 60.8% of the participants stop searching for designs sooner than they actually do while accurately predicting when the remaining 39.2% of the participants stop. These results suggest that a majority of the designers show a strong tendency to overestimate their opponents’ performance, leading them to spend more on searching for better designs than they would have, had they known their opponents’ actual performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIntegrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4048222
    journal fristpage051401-1
    journal lastpage051401-9
    page9
    treeJournal of Mechanical Design:;2020:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian