YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 012::page 0121002-1
    Author:
    Niccolini Marmont Du Haut Champ, Carlo Alberto
    ,
    Silvestri, Paolo
    ,
    Ferrari, Mario Luigi
    ,
    Massardo, Aristide Fausto
    DOI: 10.1115/1.4048910
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper shows signal processing techniques applied to experimental data obtained from a T100 microturbine connected with different volume sizes. This experimental activity was conducted by means of the test rig developed at the University of Genoa for hybrid systems emulation. However, these results can be extended to all advanced cycles in which a microturbine is connected with additional external components which lead to an increase of the plant volume size. Since in this case a 100 kW microturbine was used, the volume was located between the heat recovery unit outlet and the combustor inlet like in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. The main results reported in this paper are related to rotating stall and surge operations. This analysis was carried out to extend the knowledge about these risk conditions: the systems equipped with large volume size connected to the machine present critical issues related to surge and stall prevention, especially during transient operations toward low mass flowrate working conditions. Investigations conducted on acoustic and vibrational measurements can provide interesting diagnostic and predictive solutions by means of suitable instability quantifiers which are extracted from microphone and accelerometer data signals. Hence, different possible tools for rotating stall and incipient surge identification were developed through the use of different signal processing techniques, such as wavelet analysis and higher order statistics analysis (HOSA) methods. Indeed, these advanced techniques are necessary to maximize all the information conveyed by acquired signals, particularly in those environments in which measured physical quantities are hidden by strong noise, including both broadband background one (i.e., typical random noise) but also uninteresting components associated with the signal of interest. For instance, in complex coupled physical systems like the one it is meant to be studied, which do not satisfy the hypothesis of linear and Gaussian processes inside them, it is reasonable to exploit these kinds of tools, instead of the classical fast Fourier transform (FFT) technique by itself, which is mainly adapt for linear systems periodic analysis. The proposed techniques led to the definition of a quantitative indicator, the sum of all autobispectrum components modulus in the subsynchronous range, which was proven to be reliable in predicting unstable operation. This can be used as an input for diagnostic systems for early surge detection. Furthermore, the presented methods will allow the definition of some new features complementary with the ones obtainable from conventional techniques, in order to improve control systems reliability and to avoid false positives.
    • Download: (3.774Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275988
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorNiccolini Marmont Du Haut Champ, Carlo Alberto
    contributor authorSilvestri, Paolo
    contributor authorFerrari, Mario Luigi
    contributor authorMassardo, Aristide Fausto
    date accessioned2022-02-04T23:02:55Z
    date available2022-02-04T23:02:55Z
    date copyright12/1/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_12_121002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275988
    description abstractThis paper shows signal processing techniques applied to experimental data obtained from a T100 microturbine connected with different volume sizes. This experimental activity was conducted by means of the test rig developed at the University of Genoa for hybrid systems emulation. However, these results can be extended to all advanced cycles in which a microturbine is connected with additional external components which lead to an increase of the plant volume size. Since in this case a 100 kW microturbine was used, the volume was located between the heat recovery unit outlet and the combustor inlet like in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. The main results reported in this paper are related to rotating stall and surge operations. This analysis was carried out to extend the knowledge about these risk conditions: the systems equipped with large volume size connected to the machine present critical issues related to surge and stall prevention, especially during transient operations toward low mass flowrate working conditions. Investigations conducted on acoustic and vibrational measurements can provide interesting diagnostic and predictive solutions by means of suitable instability quantifiers which are extracted from microphone and accelerometer data signals. Hence, different possible tools for rotating stall and incipient surge identification were developed through the use of different signal processing techniques, such as wavelet analysis and higher order statistics analysis (HOSA) methods. Indeed, these advanced techniques are necessary to maximize all the information conveyed by acquired signals, particularly in those environments in which measured physical quantities are hidden by strong noise, including both broadband background one (i.e., typical random noise) but also uninteresting components associated with the signal of interest. For instance, in complex coupled physical systems like the one it is meant to be studied, which do not satisfy the hypothesis of linear and Gaussian processes inside them, it is reasonable to exploit these kinds of tools, instead of the classical fast Fourier transform (FFT) technique by itself, which is mainly adapt for linear systems periodic analysis. The proposed techniques led to the definition of a quantitative indicator, the sum of all autobispectrum components modulus in the subsynchronous range, which was proven to be reliable in predicting unstable operation. This can be used as an input for diagnostic systems for early surge detection. Furthermore, the presented methods will allow the definition of some new features complementary with the ones obtainable from conventional techniques, in order to improve control systems reliability and to avoid false positives.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSignal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048910
    journal fristpage0121002-1
    journal lastpage0121002-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian