YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 012::page 0121011-1
    Author:
    Tieghi, Lorenzo
    ,
    Corsini, Alessandro
    ,
    Delibra, Giovanni
    ,
    Angelini, Gino
    DOI: 10.1115/1.4048568
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Near-wall modeling is one of the most challenging aspects of computational fluid dynamic computations. In fact, integration-to-the-wall with low-Reynolds approach strongly affects accuracy of results, but strongly increases the computational resources required by the simulation. A compromise between accuracy and speed to solution is usually obtained through the use of wall functions (WFs), especially in Reynolds averaged Navier–Stokes computations, which normally require that the first cell of the grid to fall inside the log-layer (50 < y+ < 200) (Wilcox, D. C., 1998, Turbulence Modeling for CFD, Vol. 2, DCW Industries, La Cañada, CA). This approach can be generally considered as robust, however the derivation of wall functions from attached flow boundary layers can mislead to nonphysical results in presence of specific flow topologies, e.g., recirculation, or whenever a detailed boundary layer representation is required (e.g., aeroacoustics studies) (Craft, T., Gant, S., Gerasimov, A., Lacovides, H., and Launder, B., 2002, “Wall – Function Strategies for Use in Turbulent Flow CFD,” Proceedings to 12th International Heat Transfer Conference, Grenoble, France, Aug. 18–23). In this work, a preliminary attempt to create an alternative data-driven wall function is performed, exploiting artificial neural networks (ANNs). Whenever enough training examples are provided, ANNs have proven to be extremely powerful in solving complex nonlinear problems (Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y., 2016, Deep Learning, Vol. 1, MIT Press, Cambridge, MA). The learner that is derived from the multilayer perceptron ANN, is here used to obtain two-dimensional, turbulent production and dissipation values near the walls. Training examples of the dataset have been initially collected either from large eddy simulation (LES) simulations of significant 2D test cases or have been found in open databases. Assessments on the morphology and the ANN training can be found in the paper. The ANN has been implemented in a Python environment, using scikit-learn and tensorflow libraries (Scikit-Learn Developers, 2019, “Scikit-learn v0.20.0 User Guide,” Software, Scikit-Learn Developers; Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, “TensorFlow: A System for Large-Scale Machine Learning,” 12th Symposium on Operating Systems Design and Implementation, Savannah, GA, Nov. 2–4, pp. 265–283). The derived wall function is implemented in openfoam v-17.12 (CFD Direct, 2020, “OpenFoam User Guide v5,” CFD Direct, Caversham, UK), embedding the forwarding algorithm in run-time computations exploiting Python3.6m C_Api library. The data-driven wall function is here applied to k-epsilon simulations of a 2D periodic hill with different computational grids and to a modified compressor cascade NACA aerofoil with sinusoidal leading edge. A comparison between ANN enhanced simulations, available data and standard modelization is here performed and reported.
    • Download: (2.739Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275968
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorTieghi, Lorenzo
    contributor authorCorsini, Alessandro
    contributor authorDelibra, Giovanni
    contributor authorAngelini, Gino
    date accessioned2022-02-04T23:02:25Z
    date available2022-02-04T23:02:25Z
    date copyright12/1/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_12_121011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275968
    description abstractNear-wall modeling is one of the most challenging aspects of computational fluid dynamic computations. In fact, integration-to-the-wall with low-Reynolds approach strongly affects accuracy of results, but strongly increases the computational resources required by the simulation. A compromise between accuracy and speed to solution is usually obtained through the use of wall functions (WFs), especially in Reynolds averaged Navier–Stokes computations, which normally require that the first cell of the grid to fall inside the log-layer (50 < y+ < 200) (Wilcox, D. C., 1998, Turbulence Modeling for CFD, Vol. 2, DCW Industries, La Cañada, CA). This approach can be generally considered as robust, however the derivation of wall functions from attached flow boundary layers can mislead to nonphysical results in presence of specific flow topologies, e.g., recirculation, or whenever a detailed boundary layer representation is required (e.g., aeroacoustics studies) (Craft, T., Gant, S., Gerasimov, A., Lacovides, H., and Launder, B., 2002, “Wall – Function Strategies for Use in Turbulent Flow CFD,” Proceedings to 12th International Heat Transfer Conference, Grenoble, France, Aug. 18–23). In this work, a preliminary attempt to create an alternative data-driven wall function is performed, exploiting artificial neural networks (ANNs). Whenever enough training examples are provided, ANNs have proven to be extremely powerful in solving complex nonlinear problems (Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y., 2016, Deep Learning, Vol. 1, MIT Press, Cambridge, MA). The learner that is derived from the multilayer perceptron ANN, is here used to obtain two-dimensional, turbulent production and dissipation values near the walls. Training examples of the dataset have been initially collected either from large eddy simulation (LES) simulations of significant 2D test cases or have been found in open databases. Assessments on the morphology and the ANN training can be found in the paper. The ANN has been implemented in a Python environment, using scikit-learn and tensorflow libraries (Scikit-Learn Developers, 2019, “Scikit-learn v0.20.0 User Guide,” Software, Scikit-Learn Developers; Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, “TensorFlow: A System for Large-Scale Machine Learning,” 12th Symposium on Operating Systems Design and Implementation, Savannah, GA, Nov. 2–4, pp. 265–283). The derived wall function is implemented in openfoam v-17.12 (CFD Direct, 2020, “OpenFoam User Guide v5,” CFD Direct, Caversham, UK), embedding the forwarding algorithm in run-time computations exploiting Python3.6m C_Api library. The data-driven wall function is here applied to k-epsilon simulations of a 2D periodic hill with different computational grids and to a modified compressor cascade NACA aerofoil with sinusoidal leading edge. A comparison between ANN enhanced simulations, available data and standard modelization is here performed and reported.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048568
    journal fristpage0121011-1
    journal lastpage0121011-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian