contributor author | Liśkiewicz, Grzegorz | |
contributor author | Kulak, Michał | |
contributor author | Sobczak, Krzysztof | |
contributor author | Stickland, Matthew | |
date accessioned | 2022-02-04T23:01:46Z | |
date available | 2022-02-04T23:01:46Z | |
date copyright | 12/1/2020 12:00:00 AM | |
date issued | 2020 | |
identifier issn | 0889-504X | |
identifier other | turbo_142_12_121005.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4275944 | |
description abstract | In this article, a numerical model of the full surge cycle is presented for the low-speed centrifugal blower and compared with the experiment. Surge phenomenon is very dangerous for the compressor operation. Therefore, the possibility of studying its physics experimentally is strongly limited. The application of numerical methods allows one to safely analyze surge physics without causing risks to the operating crew. This article presents a description of the applied numerical method and exhaustive analysis of the flow structures observed at consecutive stages of the surge cycle. The surge is known to be very difficult to be simulated due to large timescale and region of influence. This study also shows the importance of an appropriate choice of the simulation definition and the boundary conditions. The presented method allows gathering information about features such as the regions of flow reversal, pressure distributions, pressure rise, cycle frequency, and others. All the aforementioned information provides important input to the efficient antisurge system design. The model has been validated by a comparison with the experimental data. Thanks to simulation, standardized antisurge solutions could be possibly replaced with more efficient protection schemes tailored to a given machine. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Numerical Model of a Deep Surge Cycle in Low-Speed Centrifugal Compressor | |
type | Journal Paper | |
journal volume | 142 | |
journal issue | 12 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4048328 | |
journal fristpage | 0121005-1 | |
journal lastpage | 0121005-14 | |
page | 14 | |
tree | Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 012 | |
contenttype | Fulltext | |