Show simple item record

contributor authorLiśkiewicz, Grzegorz
contributor authorKulak, Michał
contributor authorSobczak, Krzysztof
contributor authorStickland, Matthew
date accessioned2022-02-04T23:01:46Z
date available2022-02-04T23:01:46Z
date copyright12/1/2020 12:00:00 AM
date issued2020
identifier issn0889-504X
identifier otherturbo_142_12_121005.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275944
description abstractIn this article, a numerical model of the full surge cycle is presented for the low-speed centrifugal blower and compared with the experiment. Surge phenomenon is very dangerous for the compressor operation. Therefore, the possibility of studying its physics experimentally is strongly limited. The application of numerical methods allows one to safely analyze surge physics without causing risks to the operating crew. This article presents a description of the applied numerical method and exhaustive analysis of the flow structures observed at consecutive stages of the surge cycle. The surge is known to be very difficult to be simulated due to large timescale and region of influence. This study also shows the importance of an appropriate choice of the simulation definition and the boundary conditions. The presented method allows gathering information about features such as the regions of flow reversal, pressure distributions, pressure rise, cycle frequency, and others. All the aforementioned information provides important input to the efficient antisurge system design. The model has been validated by a comparison with the experimental data. Thanks to simulation, standardized antisurge solutions could be possibly replaced with more efficient protection schemes tailored to a given machine.
publisherThe American Society of Mechanical Engineers (ASME)
titleNumerical Model of a Deep Surge Cycle in Low-Speed Centrifugal Compressor
typeJournal Paper
journal volume142
journal issue12
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4048328
journal fristpage0121005-1
journal lastpage0121005-14
page14
treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record