YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Atomistic Perspective on the Effect of Strain Rate and Lithium Fraction on the Mechanical Behavior of Silicon Electrodes

    Source: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 003::page 031011-1
    Author:
    Darbaniyan, Faezeh
    ,
    Yan, Xin
    ,
    Sharma, Pradeep
    DOI: 10.1115/1.4045545
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The process of charging and discharging of lithium-ion batteries results in the periodic intercalation and ejection of lithium ions in the anode material. High-capacity anode materials that are of significant interest for next-generation batteries, such as silicon, undergo large deformation during this process. The ensuing electro-chemo-mechanical stresses and accompanying microstructural changes lead to a complex state of inelastic deformation and damage in the silicon electrode that causes a significant capacity loss within just a few cycles. In this study, we attempt to understand, from an atomistic viewpoint, the mechanisms underlying the plasticity behavior of Si-anode as a function of lithiation. Conventional molecular dynamics simulations are of limited use since they are restricted to loading rates in the order of 108 s−1. Practical charging-discharging rates are several orders of magnitude slower, thus precluding a realistic atomistic assessment of the highly rate-dependent mechanical behavior of lithiated silicon anodes via conventional molecular dynamics. In this work, we use a time-scaling approach that is predicated on the combination of a potential energy surface sampling method, minimum energy pathway, kinetic Monte Carlo, and transition state theory, to achieve applied strain rates as low as 1 s−1. We assess and compare the atomistic mechanisms of plastic deformation in three different lithium concentration structures: LiSi2, LiSi, and Li15Si4 for various strain-rates. We find that the strain rate plays a significant role in the alteration of the deformation and damage mechanisms including the evolution of the plastic deformation, nucleation of shear transformation zone, and void nucleation. Somewhat anomalously, LiSi appears to demonstrate (comparatively) the least strain rate sensitivity.
    • Download: (1.228Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Atomistic Perspective on the Effect of Strain Rate and Lithium Fraction on the Mechanical Behavior of Silicon Electrodes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275836
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorDarbaniyan, Faezeh
    contributor authorYan, Xin
    contributor authorSharma, Pradeep
    date accessioned2022-02-04T22:58:53Z
    date available2022-02-04T22:58:53Z
    date copyright3/1/2020 12:00:00 AM
    date issued2020
    identifier issn0021-8936
    identifier otherjam_87_3_031011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275836
    description abstractThe process of charging and discharging of lithium-ion batteries results in the periodic intercalation and ejection of lithium ions in the anode material. High-capacity anode materials that are of significant interest for next-generation batteries, such as silicon, undergo large deformation during this process. The ensuing electro-chemo-mechanical stresses and accompanying microstructural changes lead to a complex state of inelastic deformation and damage in the silicon electrode that causes a significant capacity loss within just a few cycles. In this study, we attempt to understand, from an atomistic viewpoint, the mechanisms underlying the plasticity behavior of Si-anode as a function of lithiation. Conventional molecular dynamics simulations are of limited use since they are restricted to loading rates in the order of 108 s−1. Practical charging-discharging rates are several orders of magnitude slower, thus precluding a realistic atomistic assessment of the highly rate-dependent mechanical behavior of lithiated silicon anodes via conventional molecular dynamics. In this work, we use a time-scaling approach that is predicated on the combination of a potential energy surface sampling method, minimum energy pathway, kinetic Monte Carlo, and transition state theory, to achieve applied strain rates as low as 1 s−1. We assess and compare the atomistic mechanisms of plastic deformation in three different lithium concentration structures: LiSi2, LiSi, and Li15Si4 for various strain-rates. We find that the strain rate plays a significant role in the alteration of the deformation and damage mechanisms including the evolution of the plastic deformation, nucleation of shear transformation zone, and void nucleation. Somewhat anomalously, LiSi appears to demonstrate (comparatively) the least strain rate sensitivity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Atomistic Perspective on the Effect of Strain Rate and Lithium Fraction on the Mechanical Behavior of Silicon Electrodes
    typeJournal Paper
    journal volume87
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4045545
    journal fristpage031011-1
    journal lastpage031011-7
    page7
    treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian