YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators

    Source: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 002::page 021007-1
    Author:
    Sharma, Atul Kumar
    DOI: 10.1115/1.4045502
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dielectric elastomers (DEs) are a class of highly deformable electroactive polymers (EAPs) employed for electromechanical transduction technology. When electrostatically actuated dielectric elastomer actuators (DEAs) are subjected to an input signal comprising multiple Heaviside voltage steps, the emerging inherent residual vibrations may limit their motion accuracy in practical applications. In this paper, the systematic development of a command-shaping scheme is proposed for controlling residual vibrations in an electrically driven planar DEA. The proposed scheme relies on invoking the force balance at the point of maximum lateral stretch in an oscillation cycle to bring the actuator to a stagnation state followed by the application of an additional electric input signal of predetermined magnitude at a specific time. The underlying concept of the proposed control scheme is articulated for a single Heaviside step input-driven actuator and further extended to the actuator subjected to the multistep input signal. The equation governing the dynamic motion of the actuator is derived using the principle of virtual work. The devised dynamic model of the actuator incorporates the effects of strain stiffening of elastomer and viscous energy dissipation. The nonlinear dynamic governing equation is solved using matlab ode solver for extracting the dynamic response of the actuator. The applicability of the devised command-shaping control scheme is illustrated by taking a wide range of parameters including variations in the extent of equilibrium state sequences, damping, and polymer chain extensibility. The proposed scheme is found to be adaptable in controlling the vibrations of the actuator for any desired equilibrium state. The results presented in this paper can find its potential application in the design of an open-loop control system for DEAs.
    • Download: (1.015Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275801
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorSharma, Atul Kumar
    date accessioned2022-02-04T22:57:49Z
    date available2022-02-04T22:57:49Z
    date copyright2/1/2020 12:00:00 AM
    date issued2020
    identifier issn0021-8936
    identifier otherjam_87_2_021007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275801
    description abstractDielectric elastomers (DEs) are a class of highly deformable electroactive polymers (EAPs) employed for electromechanical transduction technology. When electrostatically actuated dielectric elastomer actuators (DEAs) are subjected to an input signal comprising multiple Heaviside voltage steps, the emerging inherent residual vibrations may limit their motion accuracy in practical applications. In this paper, the systematic development of a command-shaping scheme is proposed for controlling residual vibrations in an electrically driven planar DEA. The proposed scheme relies on invoking the force balance at the point of maximum lateral stretch in an oscillation cycle to bring the actuator to a stagnation state followed by the application of an additional electric input signal of predetermined magnitude at a specific time. The underlying concept of the proposed control scheme is articulated for a single Heaviside step input-driven actuator and further extended to the actuator subjected to the multistep input signal. The equation governing the dynamic motion of the actuator is derived using the principle of virtual work. The devised dynamic model of the actuator incorporates the effects of strain stiffening of elastomer and viscous energy dissipation. The nonlinear dynamic governing equation is solved using matlab ode solver for extracting the dynamic response of the actuator. The applicability of the devised command-shaping control scheme is illustrated by taking a wide range of parameters including variations in the extent of equilibrium state sequences, damping, and polymer chain extensibility. The proposed scheme is found to be adaptable in controlling the vibrations of the actuator for any desired equilibrium state. The results presented in this paper can find its potential application in the design of an open-loop control system for DEAs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators
    typeJournal Paper
    journal volume87
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4045502
    journal fristpage021007-1
    journal lastpage021007-9
    page9
    treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian