YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Leakage and Force Coefficients of a Grooved Wet (Bubbly Liquid) Seal for Multiphase Pumps and Comparisons With Prior Test Results for a Three Wave Seal

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001::page 011011-1
    Author:
    Lu, Xueliang
    ,
    San Andrés, Luis
    ,
    Wu, Tingcheng
    DOI: 10.1115/1.4044682
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the subsea oil and gas industry, multiphase pumps and wet gas compressors are engineered choices saving transportation and separation facility costs. In these machines, seals handling multiple phase components must be able to operate without affecting the system efficiency and its dynamic stability. This paper, extending prior work conducted with uniform clearance and wavy surface annular seals, presents measurements of leakage and dynamic force coefficients in a grooved seal whose dimensions are scaled from an impeller wear ring seal in a boiler feed pump. The 14-grooves seal has diameter D = 127 mm, length L = 0.34 D, and clearance c = 0.211 mm; each groove has shallow depth dg ∼2.6 c and length Lg ∼ 3.4% L. At a shaft speed of 3.5 krpm (surface speed = 23.3 m/s), a mixture of air in ISO VG 10 oil with inlet gas volume fraction (GVF) ranging from 0 (just oil) to 0.7 (mostly air) lubricates the seal. The pressure ratio (inlet/exit) is 2.9. The flow is laminar since the liquid is viscous and the pressure drop is low. The measured mixture mass flow decreases continuously with an increase in inlet GVF. The seal stiffnesses (direct K and cross coupled k), added mass (M), and direct damping (C) coefficients are constant when the supplied mixture is low in gas content, GVF ≤ 0.1. As the gas content increases, 0.2 ≤  GVF ≤ 0.5, the seal direct dynamic stiffness becomes nil with an increase in excitation frequency, whereas k and C reduce steadily with GVF. In general, for GVF ≤ 0.5, the direct damping is invariant with frequency; variations appearing for GVF = 0.7. Compared against a three wave annular seal, the grooved seal offers much lower force coefficients, in particular the viscous damping. Thus, for laminar flow operation (heavy oil) with a low pressure drop as in a wear ring seal, a three wave seal is recommended as it also offers a significant centering stiffness.
    • Download: (2.997Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Leakage and Force Coefficients of a Grooved Wet (Bubbly Liquid) Seal for Multiphase Pumps and Comparisons With Prior Test Results for a Three Wave Seal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275797
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLu, Xueliang
    contributor authorSan Andrés, Luis
    contributor authorWu, Tingcheng
    date accessioned2022-02-04T22:57:41Z
    date available2022-02-04T22:57:41Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_01_011011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275797
    description abstractIn the subsea oil and gas industry, multiphase pumps and wet gas compressors are engineered choices saving transportation and separation facility costs. In these machines, seals handling multiple phase components must be able to operate without affecting the system efficiency and its dynamic stability. This paper, extending prior work conducted with uniform clearance and wavy surface annular seals, presents measurements of leakage and dynamic force coefficients in a grooved seal whose dimensions are scaled from an impeller wear ring seal in a boiler feed pump. The 14-grooves seal has diameter D = 127 mm, length L = 0.34 D, and clearance c = 0.211 mm; each groove has shallow depth dg ∼2.6 c and length Lg ∼ 3.4% L. At a shaft speed of 3.5 krpm (surface speed = 23.3 m/s), a mixture of air in ISO VG 10 oil with inlet gas volume fraction (GVF) ranging from 0 (just oil) to 0.7 (mostly air) lubricates the seal. The pressure ratio (inlet/exit) is 2.9. The flow is laminar since the liquid is viscous and the pressure drop is low. The measured mixture mass flow decreases continuously with an increase in inlet GVF. The seal stiffnesses (direct K and cross coupled k), added mass (M), and direct damping (C) coefficients are constant when the supplied mixture is low in gas content, GVF ≤ 0.1. As the gas content increases, 0.2 ≤  GVF ≤ 0.5, the seal direct dynamic stiffness becomes nil with an increase in excitation frequency, whereas k and C reduce steadily with GVF. In general, for GVF ≤ 0.5, the direct damping is invariant with frequency; variations appearing for GVF = 0.7. Compared against a three wave annular seal, the grooved seal offers much lower force coefficients, in particular the viscous damping. Thus, for laminar flow operation (heavy oil) with a low pressure drop as in a wear ring seal, a three wave seal is recommended as it also offers a significant centering stiffness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLeakage and Force Coefficients of a Grooved Wet (Bubbly Liquid) Seal for Multiphase Pumps and Comparisons With Prior Test Results for a Three Wave Seal
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044682
    journal fristpage011011-1
    journal lastpage011011-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian