YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laminar Flame Speed Experiments of Alternative Liquid Fuels

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001::page 011013-1
    Author:
    Keesee, Charles L.
    ,
    Guo, Bing
    ,
    Petersen, Eric L.
    DOI: 10.1115/1.4045346
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: New laminar flame speed experiments have been collected for two alternative liquid fuels. Understanding the combustion characteristics of these synthetic fuels is an important step in developing new chemical kinetics mechanisms that can be applied to real fuels. Included in this study are two synthetic Jet fuels: Syntroleum S-8 and Shell GTL. The precise composition of these fuels is known to change from sample to sample. Since these are low-vapor pressure fuels, there are additional uncertainties in their introduction into gas-phase mixtures, leading to uncertainty in the mixture equivalence ratio. An in-situ laser absorption technique was implemented to verify the procedure for filling the vessel and to minimize and quantify the uncertainty in the experimental equivalence ratio. The diagnostic utilized a 3.39-μm HeNe laser in conjunction with Beer's law. The resulting spherically expanding, laminar flame experiments were conducted over a range of equivalence ratios from φ = 0.7 to φ = 1.5 at initial conditions of 1 atm and 403 K in the high-temperature, high-pressure (HTHP) constant-volume vessel at Texas A&M University. The experimental results show that both fuels have similar flame speeds with a peak value just under 60 cm/s. However, it is shown that when comparing the results from different datasets for these real fuels, equivalence ratio may not be the best parameter to use. Fuel mole fraction may be a better parameter to use as it is independent of the average fuel molecule or fuel surrogate used to calculate equivalence ratio in these real fuel/air mixtures.
    • Download: (972.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laminar Flame Speed Experiments of Alternative Liquid Fuels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275698
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKeesee, Charles L.
    contributor authorGuo, Bing
    contributor authorPetersen, Eric L.
    date accessioned2022-02-04T22:54:58Z
    date available2022-02-04T22:54:58Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_01_011013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275698
    description abstractNew laminar flame speed experiments have been collected for two alternative liquid fuels. Understanding the combustion characteristics of these synthetic fuels is an important step in developing new chemical kinetics mechanisms that can be applied to real fuels. Included in this study are two synthetic Jet fuels: Syntroleum S-8 and Shell GTL. The precise composition of these fuels is known to change from sample to sample. Since these are low-vapor pressure fuels, there are additional uncertainties in their introduction into gas-phase mixtures, leading to uncertainty in the mixture equivalence ratio. An in-situ laser absorption technique was implemented to verify the procedure for filling the vessel and to minimize and quantify the uncertainty in the experimental equivalence ratio. The diagnostic utilized a 3.39-μm HeNe laser in conjunction with Beer's law. The resulting spherically expanding, laminar flame experiments were conducted over a range of equivalence ratios from φ = 0.7 to φ = 1.5 at initial conditions of 1 atm and 403 K in the high-temperature, high-pressure (HTHP) constant-volume vessel at Texas A&M University. The experimental results show that both fuels have similar flame speeds with a peak value just under 60 cm/s. However, it is shown that when comparing the results from different datasets for these real fuels, equivalence ratio may not be the best parameter to use. Fuel mole fraction may be a better parameter to use as it is independent of the average fuel molecule or fuel surrogate used to calculate equivalence ratio in these real fuel/air mixtures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLaminar Flame Speed Experiments of Alternative Liquid Fuels
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4045346
    journal fristpage011013-1
    journal lastpage011013-7
    page7
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian