YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simple Contact Stiffness Model Validation for Tie Bolt Rotor Design With Butt Joints and Pilot Fits

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001::page 011014-1
    Author:
    Rimpel, Aaron M.
    ,
    Leopard, Matthew
    DOI: 10.1115/1.4045102
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tie bolt rotors for centrifugal compressors comprise multiple shaft components that are held together by a single tie bolt. The axial connections of these rotors—including butt joints, Hirth couplings, and Curvic couplings—exhibit a contact stiffness effect, which tends to lower the shaft bending frequencies compared to geometrically identical monolithic shafts. If not accounted for in the design stage, shaft bending critical speed margins can be compromised after a rotor is built. A previous paper had investigated the effect of tie bolt force on the bending stiffness of stacked rotor assemblies with butt joint interfaces, both with and without pilot fits. This previous work derived an empirical contact stiffness model and developed a practical finite element modeling approach for simulating the axial contact surfaces, which was validated by predicting natural frequencies for several test rotor configurations. The present work built on these previous results by implementing the same contact stiffness modeling approach on a real tie bolt rotor system designed for a high pressure centrifugal compressor application. Each joint location included two axial contact faces, with contact pressures up to five times higher than previously modeled, and a locating pilot fit. The free-free natural frequencies for different amounts of tie bolt preload force were measured, and the frequencies exhibited the expected stiffening behavior with increasing preload. However, a discontinuity in the data trend indicated a step-change increase in the contact stiffness. It was shown that this was likely due to one or more of the contact faces becoming fully engaged only after sufficient tie bolt force was applied. Finally, a design calculation was presented that can be used to estimate whether contact stiffness effects may be ignored, which could simplify rotor analyses if adequate contact pressure is used.
    • Download: (1.541Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simple Contact Stiffness Model Validation for Tie Bolt Rotor Design With Butt Joints and Pilot Fits

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275543
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorRimpel, Aaron M.
    contributor authorLeopard, Matthew
    date accessioned2022-02-04T22:50:25Z
    date available2022-02-04T22:50:25Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_01_011014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275543
    description abstractTie bolt rotors for centrifugal compressors comprise multiple shaft components that are held together by a single tie bolt. The axial connections of these rotors—including butt joints, Hirth couplings, and Curvic couplings—exhibit a contact stiffness effect, which tends to lower the shaft bending frequencies compared to geometrically identical monolithic shafts. If not accounted for in the design stage, shaft bending critical speed margins can be compromised after a rotor is built. A previous paper had investigated the effect of tie bolt force on the bending stiffness of stacked rotor assemblies with butt joint interfaces, both with and without pilot fits. This previous work derived an empirical contact stiffness model and developed a practical finite element modeling approach for simulating the axial contact surfaces, which was validated by predicting natural frequencies for several test rotor configurations. The present work built on these previous results by implementing the same contact stiffness modeling approach on a real tie bolt rotor system designed for a high pressure centrifugal compressor application. Each joint location included two axial contact faces, with contact pressures up to five times higher than previously modeled, and a locating pilot fit. The free-free natural frequencies for different amounts of tie bolt preload force were measured, and the frequencies exhibited the expected stiffening behavior with increasing preload. However, a discontinuity in the data trend indicated a step-change increase in the contact stiffness. It was shown that this was likely due to one or more of the contact faces becoming fully engaged only after sufficient tie bolt force was applied. Finally, a design calculation was presented that can be used to estimate whether contact stiffness effects may be ignored, which could simplify rotor analyses if adequate contact pressure is used.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimple Contact Stiffness Model Validation for Tie Bolt Rotor Design With Butt Joints and Pilot Fits
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4045102
    journal fristpage011014-1
    journal lastpage011014-6
    page6
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian