YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an High-Pressure Turbine Vane

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 008::page 081008-1
    Author:
    Zhao, Yaomin
    ,
    Sandberg, Richard D.
    DOI: 10.1115/1.4046531
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Entropy loss is widely used to quantify the efficiency of components in turbomachines, and empirical relations have been developed to estimate the contribution of different mechanisms. However, further analysis is still needed to not only get a deeper insight of the physics but also to more accurately quantify the loss generation caused by different terms. In the present study, the entropy transport equations based on averaged flow quantities are first derived, and the entropy generation process is fully decomposed into several terms representing different physical mechanisms, such as mean viscous dissipation, turbulence production, mean, and turbulent heat flux, etc. This decomposition framework is then applied to high-resolution large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) results of a VKI LS-89 HPT vane, and a detailed quantification of different entropy generation terms is obtained. The results show that the entropy generation caused by mean flow features like mean viscous dissipation and mean heat flux are in close agreement between LES and RANS, indicating that RANS provides an overall good prediction for the mean flow. Furthermore, we find that turbulence production plays an important role in entropy generation as it represents the energy extracted from the mean flow to turbulent fluctuations. However, the difference between RANS and LES results for the turbulence production term is not negligible, particularly in the wake region. This implies that the failure of RANS to predict the correct total loss might be largely caused by errors in capturing the correct turbulence production in the near wake region.
    • Download: (412.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an High-Pressure Turbine Vane

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275439
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorZhao, Yaomin
    contributor authorSandberg, Richard D.
    date accessioned2022-02-04T22:22:32Z
    date available2022-02-04T22:22:32Z
    date copyright7/29/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_8_081008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275439
    description abstractEntropy loss is widely used to quantify the efficiency of components in turbomachines, and empirical relations have been developed to estimate the contribution of different mechanisms. However, further analysis is still needed to not only get a deeper insight of the physics but also to more accurately quantify the loss generation caused by different terms. In the present study, the entropy transport equations based on averaged flow quantities are first derived, and the entropy generation process is fully decomposed into several terms representing different physical mechanisms, such as mean viscous dissipation, turbulence production, mean, and turbulent heat flux, etc. This decomposition framework is then applied to high-resolution large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) results of a VKI LS-89 HPT vane, and a detailed quantification of different entropy generation terms is obtained. The results show that the entropy generation caused by mean flow features like mean viscous dissipation and mean heat flux are in close agreement between LES and RANS, indicating that RANS provides an overall good prediction for the mean flow. Furthermore, we find that turbulence production plays an important role in entropy generation as it represents the energy extracted from the mean flow to turbulent fluctuations. However, the difference between RANS and LES results for the turbulence production term is not negligible, particularly in the wake region. This implies that the failure of RANS to predict the correct total loss might be largely caused by errors in capturing the correct turbulence production in the near wake region.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUsing a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an High-Pressure Turbine Vane
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046531
    journal fristpage081008-1
    journal lastpage081008-8
    page8
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian