YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study on Forced Convective Heat Transfer of FC-72 in Vertical Small Tubes

    Source: Journal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 006::page 061004-1
    Author:
    Li, Yantao
    ,
    Ji, Yulong
    ,
    Fukuda, Katsuya
    ,
    Liu, Qiusheng
    DOI: 10.1115/1.4047143
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an experimental investigation of the forced convective heat transfer of FC-72 in vertical tubes at various velocities, inlet temperatures, and tube sizes. Exponentially escalating heat inputs were supplied to the small tubes with inner diameters of 1, 1.8, and 2.8 mm and effective heated lengths between 30.1 and 50.2 mm. The exponential periods of heat input range from 6.4 to 15.5 s. The experimental data suggest that the convective heat transfer coefficients increase with an increase in flow velocity and µ/µw (refers to the viscosity evaluated at the bulk liquid temperature over the liquid viscosity estimated at the tube inner surface temperature). When tube diameter and the ratio of effective heated length to inner diameter decrease, the convective heat transfer coefficients increase as well. The experimental data were nondimensionalized to explore the effect of Reynolds number (Re) on forced convection heat transfer coefficient. It was found that the Nusselt numbers (Nu) are influenced by the Re for d = 2.8 mm in the same pattern as the conventional correlations. However, the dependences of Nu on Re for d = 1 and 1.8 mm show different trends. It means that the conventional heat transfer correlations are inadequate to predict the forced convective heat transfer in minichannels. The experimental data for tubes with diameters of 1, 1.8, and 2.8 mm were well correlated separately. And, the data agree with the proposed correlations within ±15%.
    • Download: (1.024Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study on Forced Convective Heat Transfer of FC-72 in Vertical Small Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275378
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorLi, Yantao
    contributor authorJi, Yulong
    contributor authorFukuda, Katsuya
    contributor authorLiu, Qiusheng
    date accessioned2022-02-04T22:20:34Z
    date available2022-02-04T22:20:34Z
    date copyright6/16/2020 12:00:00 AM
    date issued2020
    identifier issn1948-5085
    identifier othertsea_12_6_061004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275378
    description abstractThis paper presents an experimental investigation of the forced convective heat transfer of FC-72 in vertical tubes at various velocities, inlet temperatures, and tube sizes. Exponentially escalating heat inputs were supplied to the small tubes with inner diameters of 1, 1.8, and 2.8 mm and effective heated lengths between 30.1 and 50.2 mm. The exponential periods of heat input range from 6.4 to 15.5 s. The experimental data suggest that the convective heat transfer coefficients increase with an increase in flow velocity and µ/µw (refers to the viscosity evaluated at the bulk liquid temperature over the liquid viscosity estimated at the tube inner surface temperature). When tube diameter and the ratio of effective heated length to inner diameter decrease, the convective heat transfer coefficients increase as well. The experimental data were nondimensionalized to explore the effect of Reynolds number (Re) on forced convection heat transfer coefficient. It was found that the Nusselt numbers (Nu) are influenced by the Re for d = 2.8 mm in the same pattern as the conventional correlations. However, the dependences of Nu on Re for d = 1 and 1.8 mm show different trends. It means that the conventional heat transfer correlations are inadequate to predict the forced convective heat transfer in minichannels. The experimental data for tubes with diameters of 1, 1.8, and 2.8 mm were well correlated separately. And, the data agree with the proposed correlations within ±15%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudy on Forced Convective Heat Transfer of FC-72 in Vertical Small Tubes
    typeJournal Paper
    journal volume12
    journal issue6
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4047143
    journal fristpage061004-1
    journal lastpage061004-8
    page8
    treeJournal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian