YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Surface Inclination on Filmwise Condensation Heat Transfer During Flow of Steam–Air Mixtures

    Source: Journal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 004::page 041028-1
    Author:
    Bhanawat, Abhinav
    ,
    Yadav, Mahesh Kumar
    ,
    Punetha, Maneesh
    ,
    Khandekar, Sameer
    ,
    Sharma, Pavan K.
    DOI: 10.1115/1.4046867
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Empirical/semi-empirical correlations are available in the literature to quantify the effect of several major parameters, like bulk pressure, non-condensable gas mass fraction, and wall subcooling, on condensation heat transfer coefficient (HTC). However, despite numerous applications of condensation on inclined flat plates, there is a lack of understanding of the effect of surface inclination on condensation heat transfer. Accordingly, a dedicated experimental program was undertaken to investigate the effect of surface inclination angle on filmwise steam condensation. Experiments were performed at different bulk pressures (1.7–4.2 bar absolute) and steam-air mass fractions (ranging from pure steam, i.e., 0% to 40% w/w air), with the steam-air mixture flowing over a flat test plate (Re range, 4200–4800). In each run, the inclination angle of the test surface was varied from −90 deg (condensation underneath the horizontal surface, facing downward) to +90 deg (condensation over the horizontal surface, facing upward) in increments of 15–20 deg (inclination angle θ measured from vertical). The results reveal an intriguing trend: for pure steam condensation, the HTCs decrease as the plate is inclined in either direction from the vertical, and the variation is nearly symmetric for both upward- and downward-facing configurations. On the other hand, for steam condensation in the presence of air, the HTCs decrease monotonically for upward-facing configurations, while they increase slightly (10–20%), and decrease subsequently (for θ < −70 deg) for downward-facing cases. Finally, the HTCs for inclined orientations are compared with the HTC in the standard vertical configuration to quantify the effect of inclination angle.
    • Download: (1.497Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Surface Inclination on Filmwise Condensation Heat Transfer During Flow of Steam–Air Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275369
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorBhanawat, Abhinav
    contributor authorYadav, Mahesh Kumar
    contributor authorPunetha, Maneesh
    contributor authorKhandekar, Sameer
    contributor authorSharma, Pavan K.
    date accessioned2022-02-04T22:20:18Z
    date available2022-02-04T22:20:18Z
    date copyright5/20/2020 12:00:00 AM
    date issued2020
    identifier issn1948-5085
    identifier othertsea_12_4_041028.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275369
    description abstractEmpirical/semi-empirical correlations are available in the literature to quantify the effect of several major parameters, like bulk pressure, non-condensable gas mass fraction, and wall subcooling, on condensation heat transfer coefficient (HTC). However, despite numerous applications of condensation on inclined flat plates, there is a lack of understanding of the effect of surface inclination on condensation heat transfer. Accordingly, a dedicated experimental program was undertaken to investigate the effect of surface inclination angle on filmwise steam condensation. Experiments were performed at different bulk pressures (1.7–4.2 bar absolute) and steam-air mass fractions (ranging from pure steam, i.e., 0% to 40% w/w air), with the steam-air mixture flowing over a flat test plate (Re range, 4200–4800). In each run, the inclination angle of the test surface was varied from −90 deg (condensation underneath the horizontal surface, facing downward) to +90 deg (condensation over the horizontal surface, facing upward) in increments of 15–20 deg (inclination angle θ measured from vertical). The results reveal an intriguing trend: for pure steam condensation, the HTCs decrease as the plate is inclined in either direction from the vertical, and the variation is nearly symmetric for both upward- and downward-facing configurations. On the other hand, for steam condensation in the presence of air, the HTCs decrease monotonically for upward-facing configurations, while they increase slightly (10–20%), and decrease subsequently (for θ < −70 deg) for downward-facing cases. Finally, the HTCs for inclined orientations are compared with the HTC in the standard vertical configuration to quantify the effect of inclination angle.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Surface Inclination on Filmwise Condensation Heat Transfer During Flow of Steam–Air Mixtures
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4046867
    journal fristpage041028-1
    journal lastpage041028-13
    page13
    treeJournal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian