YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Embedded Spherical Microlasers for In Vivo Diagnostic Biomechanical Performances

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2020:;volume( 003 ):;issue: 004::page 044504-1
    Author:
    Manzo, Maurizio
    ,
    Cavazos, Omar
    ,
    Ramirez-Cedillo, Erick
    ,
    Siller, Hector R.
    DOI: 10.1115/1.4048466
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this article, we propose to use spherical microlasers that can be attached to the surface of bones for in vivo strain monitoring applications. The sensing element is made of mixing polymers, namely, PEGDA-700 (Sigma Aldrich, St. Louis, MO) and Thiocure TMPMP (Evan Chemetics, Teaneck, NJ) at 4:1 ratio in volume doped with rhodamine 6G (Sigma Aldrich, St. Louis, MO) laser dye. Solid-state microlasers are fabricated by curing droplets from the liquid mixture using ultraviolet (UV) light. The sensing principle relies on morphology-dependent resonances; any changes in the strain of the bone causes a shift of the optical resonances, which can be monitored. The specimen is made of a simulated cortical bone fabricated with photopolymer resin via an additive manufacturing process. The light path within the resonator is found to be about perpendicular to the normal stress' direction caused by a bending moment. Therefore, the sensor measures the strain due to bending indirectly using the Poisson effect. Two experiments are conducted: 1) negative bone deflection (called loading) and 2) positive bone deflection (called unloading) for a strain range from 0 to 2.35 × 10−3 m/m. Sensitivity values are ∼19.489 and 19.660 nm/ε for loading and unloading experiments, respectively (percentage difference is less than 1%). In addition, the resolution of the sensor is 1 × 10−3 ε (m/m) and the maximum range is 11.58 × 10−3 ε (m/m). The quality factor of the microlaser is maintaining about constant (order of magnitude 104) during the experiments. This sensor can be used when bone location accessibility is problematic.
    • Download: (810.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Embedded Spherical Microlasers for In Vivo Diagnostic Biomechanical Performances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275048
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorManzo, Maurizio
    contributor authorCavazos, Omar
    contributor authorRamirez-Cedillo, Erick
    contributor authorSiller, Hector R.
    date accessioned2022-02-04T22:11:05Z
    date available2022-02-04T22:11:05Z
    date copyright10/13/2020 12:00:00 AM
    date issued2020
    identifier issn2572-7958
    identifier otherjesmdt_003_04_044504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275048
    description abstractIn this article, we propose to use spherical microlasers that can be attached to the surface of bones for in vivo strain monitoring applications. The sensing element is made of mixing polymers, namely, PEGDA-700 (Sigma Aldrich, St. Louis, MO) and Thiocure TMPMP (Evan Chemetics, Teaneck, NJ) at 4:1 ratio in volume doped with rhodamine 6G (Sigma Aldrich, St. Louis, MO) laser dye. Solid-state microlasers are fabricated by curing droplets from the liquid mixture using ultraviolet (UV) light. The sensing principle relies on morphology-dependent resonances; any changes in the strain of the bone causes a shift of the optical resonances, which can be monitored. The specimen is made of a simulated cortical bone fabricated with photopolymer resin via an additive manufacturing process. The light path within the resonator is found to be about perpendicular to the normal stress' direction caused by a bending moment. Therefore, the sensor measures the strain due to bending indirectly using the Poisson effect. Two experiments are conducted: 1) negative bone deflection (called loading) and 2) positive bone deflection (called unloading) for a strain range from 0 to 2.35 × 10−3 m/m. Sensitivity values are ∼19.489 and 19.660 nm/ε for loading and unloading experiments, respectively (percentage difference is less than 1%). In addition, the resolution of the sensor is 1 × 10−3 ε (m/m) and the maximum range is 11.58 × 10−3 ε (m/m). The quality factor of the microlaser is maintaining about constant (order of magnitude 104) during the experiments. This sensor can be used when bone location accessibility is problematic.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEmbedded Spherical Microlasers for In Vivo Diagnostic Biomechanical Performances
    typeJournal Paper
    journal volume3
    journal issue4
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4048466
    journal fristpage044504-1
    journal lastpage044504-5
    page5
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2020:;volume( 003 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian